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SECOND-ORDER INTERACTION BETWEEN RANDOM WAVE 
AND SUBMERGED OBSTACLE 

Akinori Yoshida1, Keisuke Murakami,2 

Masaru Yamashiro3,     Haruyuki Kojima4 

Abstruct 

A numerical method to solve the second-order interaction between a multi- 
component random wave and a submerged obstacle is presented by using Stokes' 
wave expansion and Green's second identity. The wave is unidirectional random 
wave, but nonlinear interaction up to the second-order is strictly considered. 
Laboratory experiments with several multicomponent random waves for several 
different wave powers are conducted. The transmitted wave spectra obtained 
both in the experiment and in the numerical calculation are compared. The 
effects of wave breaking on the obstacle to the transmitted wave spectra are 
also investigated. 

Introduction 

When propagating waves encounter a submerged obstacle, comparably large 
amplitude of higher order waves (free waves) could be generated because of 
the abruptly decreased water depth and nonlinear free-surface boundary con- 
dition. This free wave generation is called near-resonant interaction (e.g., 
Bryand, 1973). Several numerical method applicable to solve this nonlinear 
wave-structure interaction have been presented: for example, Massel(1983) 
solved the second-order interaction for a submerged step using the method of 
matched eigenfunction expansions; Ohyama and Nadaoka (1992) investigated 
nonlinear interaction for a submerged dike using time domain boundary integral 
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equation method; Kojima et al.(1994) clarified the second-order interaction for 
a submerged horizontal plate using the collocation methd of matched eigen- 
function expansions; Yoshida. et al.(1994) solved the second-order interaction 
between bichromatic wave and submerged structure using a frequency domain 
boundary integral equation method. 

These solutions however deal mostly with interaction of a single frequency 
component wave. Since in real sea state wa,ves generally consist of a multicom- 
ponent wave of different frequency, second-order interactions between different 
frequency components also occur, and lower and higher harmonics at the differ- 
ence and the sum frequencies of the primary component waves are generated. 
The knowledge of this energy transfer between frequencies caused by nonlinear 
wave-structure interactions seems to be lacking. 

Main aim of this study is to obtain a theoretical method to solve interaction 
problems between a random wave train of arbitrary spectrum and a submerged 
obstacle in relatively deep water depth. The wave is an unidirectional random 
wave, but nonlinear interaction up to the second-order is strictly considered. 
A solution to a multicomponent random wave is first derived using frequency 
domain boundary integral equation method, then Laboratory experiments with 
several multicomponent random waves are conducted as well as numerical cal- 
culations. Transmitted wave spectra obtained in the experiment are compared 
to those obtained with the present method. The effect of wave breaking on the 
obstacle to the free-wave generation is also investigated. 

Theoretical Formulation 

Basic assumptions and free surface boundary condition 

As shown in figure-f, a N component random wave is incident on a sub- 
merged obstacle from the positive ^-direction. The water depth h is con- 
stant, and the angular frequency of each component wave is designated with 
ap, {p — 1)'"">A0- Fluid motion is assumed to be incompressible, inviscid 
wave motion, and the velocity potential <&(x, z, t) exists. We consider the waves 
are Stokes' waves, and the velocity potential <ff(x,z,t) , water surface varia- 
tion ((x,t) , Bernoulli's constant Q(t) can be expanded with small parameter 
e(= k(0) as follows: 

*(x,z,t) = ^ L<pW{x,z,t) + e'V^.M) + • • •} (1) 

C0M) = Co {c(1W) + <(2)(*, *) + •••} (2) 

Q(t) = g(o{Q{1)(t) + zQ{2) (*) + •••} (3) 

in which k, o", Co mean the wave number, the angular frequency and the wave 
amplitude, respectively, of a characteristic wave in the multicomponent random 
wave. 



SECOND-ORDER INTERACTION 929 

Figure 1: Definition sketch 

From Stokes' wave theory, the free surface boundary condition for the 
second-order velocity potential ip^ can be expressed in terms of the first-order 
velocity potential y>W as (e.g. Newman,1977) 

dz    +~g   dt2    ~     ka dt | V  dx  )   + \  dz 

1   dtpW d   (9'V(1)   ,     dif^X     crdQW{t) 
kga   dt   dz {   dt2        '    dz   J      g      dt 

The first-order velocity potential ip^>{x^z,t) can be expressed as 

tp{1){x,z,t) = Re 
N 

P=i 

where <f>,p{x,z) is a non-dimensional complex function. 
Substituting equation (5) into equation (4), we have 

cV2>      1 GV
2

>      a 8QW 
dz        g   dt2        g    dt 

= Re 
N 

^{nw(x)e^ + nw(a;)} 
P=i 

N       N 

p=l g=p+l 

where Opp(x), Jlpg(i'), 0,pq(x) and npp(a;) are given by 

1 ipp^X* J 
~2k 

>pp   )   l   "Vp 

a    \ \ dx 

d(j>t ,,'&h\   li^A   l'V'%       d2^v 
+ {   dz       \ +  a % \  g    dz dz2 

(4) 

(5) 

(6) 

(7) 
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J Ln 

I 

~2k a   I dx dx       dz  dz 

a ' g   Oz        dz1 J       a       { g   dz dz2 

(8) 

X lpq[X J 
~2k 

2^, |dj^dj^     d<t>P d<j)q 

a   1 dx  dx       dz   dz 

*v 9  * a2 

g   dz        dz2 
--(cr'pdcpp     d2(j>% 

g   dz 
l^JlP-p 

dz 

(9) 

L±pp[X J — 
ik a   p \ g   dz        dz2 

z=0 

(10) 

in which <j>q, d(j)p/dz, • • • mean complex conjugate of <j>q, d<f>p/dz, • • •, and app, apq, 
Wpq mean angular frequencies defined by app = 2ap, apq = ap + aq, apq — ap — aq 

Equation (6) implys the second-order porential <^(2' takes the form as 

^2\x, z, t) = Re Y: Kl(^ *)+€](^ zyappt 

(ii) 

r N 

EK 
LP=I 

N       N 

E E 
p=lg=p+l 

+ E   E   {<t>p
2

q\x^)e^i + <f>pl{x1z)^t} 

where <f>0pp(x, z),    <j)p
2J(x, z), • • •, are non-dimensional complex functions; the 

(2) stationary component (j>0pp(x, z) does not contribute to the estimation of the 
second-order water surface variation and the pressure of the fluid motion, thus 
it will be neglected in the theoretical formulation from now on. 

Then from equation (11) and equation (6), the free surface boundary con- 
ditions for (f)^2}, (j>p

2^ and <f>pql are obtained, for example, for (f>„2J as I'pp !  rPq 

2 

"PP 

dAllL _ ^AW - ft    (x) 
Qz q     VPP    - ilPP(X) (12) 

Exact solutions in the open regions (1) and (2) 

The first-order potential functions </>p in the open region (1) and (2) are 
found in any textbook and they can be expressed as: 

4>P(x,z) 
[ape

lk»x + Ape~'k»x} Z(kp, z)    (region(l)) 

{Bpe
ik?*}Z(kp,z) (region(2)) 

(13) 
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in which Z(kp,z) — cosh kp(z + h)/ cosh kph and k,p is the wave number given 
by the dispersion equation, <7p/g = kpta,nhkph. 

The complex coefficient a.p denotes the wave amplitude and phase of each 
component of the incident wave, with angular frequency ap\ the complex co- 
efficients A,p and Bp, the wave amplitude and phase of each component of the 
reflected and transmitted waves, respectively. 

Substitution of the first-order potential into equations (7), (8) and (9) yields 

\lppyXJ — 
-tft {ale""* + A2

pe-^"x) - ip2apAp    (region(l)) 

-ifixBpt
ik•x (region(2)) 

(14) 

1 Ipq [X) 

'  -ifo {apaqe
ik•x + ApAqe-ik•x) 

~i/34 {apAqe
iki">x + aqApe'ikp"x^     (region(l)) 

. -i/33BpBqe'krix (region(2)) 

(15) 

npq(x) 

-ifc\apWqe'k">x + A.pAqeT%' 

Vqe'k"«x + a^Ap 

KnnX 

-i/36 \ apAqe'k'»>x + a^Ape-ik>"'x \     (region(l)) 
(16) 

-ifhBpBqe
lk^x (region(2)) 

in which kpp - kp + kp, kpq = kp + kq, kpq =\kp - kq\, Yp = ap
2/g and /3j, f32, • 

are 

A = £?tt-#.       A=7^ + « 
& 

ft 

2k 

1 

2k 

1 

2k 

ft  = 
2k 

1 

2k 

a-f{rPrq~kpkq} + ^{Tl-k2} + ^{Tl-kl} 

a-f{TPTq + kpkq} + ^{Tl-eq} + ^{Tl-kl} 

^{rPrq + kpkq} + ^{Tl-k2}-af{vl-kl} 

{TPrq - kpkq} + ^ {rj - *;} - ^ {r; - kl} 2-^- 
a 

Now we can derive a general solution of the second-order potential function 
in the open region (1) and (2). The equations, for example, governing (f>p

2J can 
be given by 
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vv    ,        ypp   _ Q 
dz2 dx2 

dz 

dz 

= 0 

(-h<z < 0) (17) 

(18) 

—4>$ = -*'A {a*e'fc">* + A$e-ik»*} - ifoapA,     (z = 0) (19) 

The general solution <j>p
2) can be obtained by the sum of a homogeneous solution 

which satisfies homogeneous surface boundary condition given by replacing the 
right-hand side of equation (19) by zero and a special solution which satisfies 
equation (19), and it can be obtained, after some calculations, as 

<t>p
2J(x, z) = A%>Z(k%>,z)e-ik®* + ibslapAp 

(20) 
+iasl {a\eik•x + A2

pe-,k»x} Z(kpp, z)  _ 

and similarly <f$ and <j)pq* are also obtained as: 

4>%Hx,z) = A%Z(kM,z)e-iW' 

+icsl [apaqe
ikj"<x + ApAqe-'k««x} Z{kpq, z)   ) (21) 

+idsl {apAqe
ik<">x + Apaqe-ik""x} Z(kpq,z) 

4>&{x,z) = AWZ(k<»,z)e-i®-* 

+ids2 {apa;e*»x + ApA~qe-ik•x} Z(kpq,z)   \ (22) 

+ica2 {apA~qe
ik<">': + Aparqe-,k*«x) Z(kpq, z) 

in which kpp\ kff and kpql are the wave numbers given by the dispersion equa- 
tions to angular frequencies, crpp, apq and Wpq, respectively. The coefficients 
asl, 6sl,- • • are 

a si 
-A 

K>-p'p t3.lT.il rCppfl - _ r 1 vv 

-Pz 
ttpq  T-cHlll K/pnik   ~ -r ' 1 VI 

"A 

bsi 

cs2 

fh 

-& 
kp(] tanli fcpqfi — 1 pq 

ft-pa XicLll.Il fcpqtl        1 pn 
d.i — 

n-pq uclllll fCpqfl        L pq 
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where Ypp = a^/g, Tpq = apq
2/g, T.pq = (?.pq

2/g. 

The general solutions, <frp
2

p\ <j>$ and (j>pql in the transmitted wa,ve region (2) 
are also obtained as follows: 

*%(*, z) = B$Z(k%yZy^* + %asl {B2e^} Z(kpp, z) (23) 

</>•(x, z) = B$Z(k%, z)e<^ + zcsl {BpBqe'k^} Z(kpq, z) (24) 

&*, *) = BWZ(k%lz)eik&* + ids2 {BpB-qe^x} Z(k^, z) (25) 

Green's second identity and linear equations 

Potential theory shows harmonic function in a. closed domain, <fi(X), which 
is a solution of Laplace equation, can be expressed with Green's second identity 

<f>(X) = 1 JD ^(Xb)^-G{r) - G(r)^(Xb) J ds (26) 

where G(r) = log?" + logr*, and r is the length between an arbitrary point 
X = (x,z) in the domain and a point Xb — (&•(,, zb) on the boundary, r* is 
the length between the point X and its mirror image Xb* with respect to the 
uniform bottom boundary, a is defined to take 7r when X is on the boundary, 
and to take 2ir when X is inside the boundary, v denotes outward normal 
to the boundary of the region (0), and the direction of the integral is taken 
counterclockwise along the boundary D (= Si + S-2~\~ 63+ S4). 

By dividing the boundary D into N number of small elements, ASj (j = 
1, 2, • • • , N), and by assuming that the potential <j> is uniform on each element, 
the integral equation (26) can be discretized as 

£ fe-y^)-^. Mil 
1   dv 

0 
(27) 

(i = l,2,...,iV) 

where 

a J&s, 
Ea = 

dG(nj) 
a JAS,      dv (28) 

ra = \f{xj - a',)2 + (zj - z,)\      rv* = y/{Xj - x.,)2 + {Zj + 2h + zt)
2  J 

Substituting all the boundary conditions along the closed region (0) into 
equation (27), we have a set of linear equations, for the second-order as well 
as the first-order problems, in terms of the velocity potentials on the bound- 

ary elements and unknown coefficients AP1 Bp, App, Bpp,---. The boundary 
conditions on the imaginary boundaries are given through the exact solutions 
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for (f>p
2J, cj)W, <t>pq* in the open regions (1) and (2). Thus we solve at first the 

linear interaction problem (e.g., Yeoung,1975) for every component wave of an- 
gular frequency ap, then for every combination of the first-order solutions with 
frequency components <xp and <r,, the linear equations for the second-order po- 

tentials <t>pp\ 4&, <Ppq* are solved, respectively. 

Energy flux correction 

The solutions have to be corrected to balance wave energy fluxes between 
the incident, reflected and transmitted waves, because in perturbation analy- 
sis up to the second-order the balance of wave energy flux is satisfied in the 
first-order; the generated second-order free waves produce excessive wave en- 
ergy. The effect of this excessive energy may be negligible for a single incident 
wave, but for multicomponent incident wave the number of generated free waves 
increases in proportion to the square of the number of the incident wave com- 
ponents, and numerical results may become unrealistic. 

To correct the numerical results so as to satisfy the conservation of the 
incident wave energy flux, the incident wave energy flux Fi, the reflected wave 
energy flux FR and the transmitted wave energy flux FT are calculated with 
numerical results of the first-order and the second-order potentials; FR and FT 

include in them the excessive wave energy flux of the generated free-waves, and 
thus Fi is always less than FR + FT- The correction factor /? is defined as 

JF[/(FR + FT), and all the reflected and the transmitted wave components 
are multiplied by (3. The effects of this energy flux correction are verified by 
comparing the corrected numerical results against the experimental results. 

Numerical and Experimental Results 

Laboratory experiments were conducted with a submerged structure as 
shown in figure-1 with B/h=2.0, q=0.3, R/h=0.7, and the water depth h=0.37m. 
Multicomponent random waves used in the experiment are shown in Table-1. 
For each multicomponent random wave, ten different phase combinations were 
used, and the results were averaged. The wave amplitudes of the component 
waves were set approximately the same, and for each multicomponent random 
wave, several different wave amplitudes ranging from small amplitude to large 
amplitude that intense wave breaking occurs on the structure were used to in- 
vestigate the effects of wave breaking on the generation of the second-order free 
waves. In addition to the above multicomponent random waves, twenty com- 
ponent random wave, modeled from Bretschneider-Mitsuyasu spectra, was also 

used. 
The wave tank is 0.3m wide, 0.5m deep and 28m long, and it is equipped 

at one end with a random wave generator having a function of wave absorption, 
and at the other end with a wave absorber.   The reflection coefficients of the 
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wave absorber were measured for several frequencies ranging kh=0.5 ~ kh=3.0, 
and they are around 0.05 for waves kh greater than 1.0 (frequency 0.7Hz)- Thus 
the lowest frequency in the multicomponent random waves was chosen to be 
greater than kh=1.0 to minimize the contamination by the reflected waves from 
the wave absorber. 

Before setting the model of the submerged obstacle in the wave tank, every 
multicomponent random wave was generated and it was measured by capacity- 
type wave gauges with sampling interval \0Hz for the number of sampled data 
8192, and from the data the incident wave spectra were obtained using First- 
Fourier-Transform(FFT). Then setting the model structure midway of the wave 
tank, transmitted waves were measured 3.0m behind the center of the structure, 
and the transmitted wave spectra, were also calculated by FFT. The wave spec- 
tra for ten different phase combinations were averaged for every multicomponent 
random wave. 

f (Ha) kh number of component 
2 3 5 10 

0.772 1.139 
0.809 1.215 • 
0.844 1.286 • • 
0.879 1.369 • •' 
0.915 1.453 
0.953 1.545 
0.993 1.651 
1.038 1.774 
1.089 1.922 
1.145 2.101 

Table 1: Frequencies of multicomponent rand om waves 

In the numerical calculations, the location of the right-hand side and the 
left-hand side imaginary boundaries are taken both 6h apart from the center 
of the obstacle. The length of the boundary element is taken 0.05h for all 
the elements. Incident wave amplitudes of component waves in the numerical 
calculation were obtained by integrating the power spectra of the incident mul- 
ticomponent random waves in the experiment. The phases of the component 
waves are given by generating random number numerically, and thus the nu- 
merical calculation were also carried out for ten phase combinations as in the 
experiment for every multicomponent random wave. Water surface variations 
at the same location where transmitted waves were measured in the experiment 
were computed and their wave spectra, were also obtained by using FFT with 
the same sampling interval and data length as in the experiment. 

Figure-2 shows power spectra of the transmitted wave ST(f) for two compo- 
nent incident wave. S means component averaged power of the incident wave, 
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Figure 2: Comparison of the numerical results against the experimental results 
in terms of transmitted wave spectra Sr{f) for two component wave (f\ = 
0.772fjz, f2 = 0.809#2); S is component averaged power of incident wave: from 
the top, figures show spectral change resulting from increase of incident wave 
amplitude. 

which is given by dividing the power of the incident wave by its number of 
component. A means wave amplitude which has the same power as S. Since 
the amplitudes of the component wave in a multicomponent random wave were 
made almost the same each other, A is approximately the same as the am- 
plitude of the component wave in the experiment. In the figure-2, when the 
averaged wave amplitude A/h is 0.036 and 0.040, wave breakings occur on the 
structure, and especially when A/h = 0.040 the wave breaking is very intense. 
The power of the second-order difference frequency waves and the power of the 
higher order waves generated around the third-order sum frequencies are negli- 
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Figure 3: Comparison of the numerical results against the experimental results 
in terms of transmitted wave spectra Sx{f) for five component incident wave: 
A/h = 0.015. 

gibly small compared to the powers of the second-order sum frequency waves, 
and thus results are shown for the first-order frequency and the second-order 
sum frequency ranges. 

It can be seen that as A increases more higher order waves are observed 
around the second-order sum frequencies, though their powers are very small, 
even before wave breaking occurs. Once wave breaking occurs on the obstacle, 
more power is transformed to higher order waves around the incident wa,ve 
frequencies (ji, J2) as well as around the second-order sum frequencies, and 
the power of the second-order sum frequency components (2/x, f\ + f2, 2/2) 
decrease drastically. On the contrary in the numerical results, the amplitudes of 
the second-order sum frequency waves increase unrealistically even after wave 
breaking occurs. 

The figure-3 shows the comparison for five component wave. The averaged 
wave amplitude A/h is 0.015 and wave breaking occurs on the obstacle inter- 
mittently. Since the energy dissipation caused by vortices and wave breaking 
are not considered in the present method, the numerical results gives smaller 
power spectra, but it can be however said that the numerical calculation gives 
good estimation for the spectral structure of the transmitted waves. 

In order to compare the numerical results against the experimental ones 

more quantitatively, the power along the incident wave frequency range S^ 

and the power of the second-order sum frequency range S?   were obtained by 
integrating the transmitted wave spectra as illustrated in figure-3. The square 

root of their ratios to the power of the incident wave spectra,  yS^ /Si and 

V ST /Si, are computed and they axe shown in figure-4 for five and ten compo- 
nent waves. The broken lines in the figures show the numerical results without 
energy flux correction. The numerical results always underestimate the exper- 
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Figure 4:   Comparison of the numerical results against the experimental re- 
sults in terms of power ST   obtained by integrating transmitted wave spectra 

(2)    • 
along the first-order frequency range and Power ST   for the second-order sum 
frequency range, which are normalized by power of incident wave 5/:   0 O 
experimental results, numerical results with energy flux correction,  
numerical result without energy flux correction. 

imental results even before wave breaking occurs, due to the energy dissipa- 
tion by vortices caused around the structure, and thus the numerical results 
gradually deviate from the experimental results as the incident wave ampli- 
tude increases. Once however wave breaking begins to occur on the structure, 
even it is not so intense, numerical results for the second-order waves largely 
underestimate the experimental results.   It however should be noted that the 

power of the first-order frequency range y ST /Sj well estimated by the present 
method even after wave breaking occurs. This may imply that the energy lost 
by wave breaking is approximately equal to the energy which should have been 
transferred to the second-order free-waves in potential theory. 

To show more clearly the effect of wave breaking, the ratios of yST /ST 

are calculated and the results are shown in figure-5. These show that the present 
method can well estimate the rate of wave energy transferred to the generated 
second-order waves as far as no wave breaking occurs on the structure. 

Figure-6 shows transmitted wave spectra for twenty component incident 
wave, modeled of Bretschneider-Mitsuyasu spectra with significant wave height 
Hx/3 = 4:.0cm (H/h = O.lf) and significant wave period Ti/3 = 1.25sec (kh = 

1.16). No wave breaking observed in this case. Because of the energy dissipa- 
tion due to vortices around the structure the numerical results underestimate 
the experimental ones, but overall structure of the transmitted wave spectra is 
well estimated. 
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Figure 5: Comparison of the numerical results against the experimental results 
in terms of ratio/Sj /Sj1 :  numerical results, # experimental results. 
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Figure 6: Comparison of the numerical results against the experimental results 
in terms of transmitted wave spectra for incident random wave modeled from 
Bretschneider-Mitsuya.su spectra (i/1/3 = 4cm, T\/:i — L.'25.sec); low frequency 

side (/ < 0.7 H^) and high frequency side (/ > \.\HZ) 
are cut off in the incident 

wave to avoid contamination by reflected waves from wave absorber and to avoid 
overlap of incident wave and generated second-order sum frequency waves. 

Conclusions 

A numerical method to solve the second-order interactions between mul- 
ticomponent random wave and submerged obstacle is presented. Numerical 
results give good estimation of the transformation of the incident wave spec- 
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tra, caused by the second-order wave structure interactions, as long as no wave 
breaking occurs on the obstacle. Once however wave breaking occurs (even it 
is not so intense), the generation of the second-order free waves is greatly sup- 
pressed, and numerical results largely underestimate the experimental results. 
The energy flux correction of the numerical results is particularly effective, even 
after wave breaking occurs, for accurate estimation of the first-order transmit- 
ted waves. 
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