
CHAPTER 68 

An attempt at applying the chaos theory to wave forecasting 

Takao Ohta1 and Akira Kimura2 

Abstract 

In this paper, a prediction method based on the 
chaos theory is applied to wave forecasting. First, it is 
investigated whether a time series data of the significant 
wave is chaotic. The correlation integral and the Lyapunov 
exponent are calculated for this purpose. In the second 
part of the paper, the prediction for the time series of 
the significant wave is attempted on the basis of the 
chaos theory. 

1. Introduction 

Wave forecasting information is required to secure 
port and harbor works. Classifying roughly, two methods 
have been used for wave forecasting. One is the deterministic 
method using the energy balance equation. The other is 
the statistical method using meteorological data 
atmospheric pressure and wind speed. However, the former 
has a problem that the meteorological knowledge, a lot of 
cost and time are needed. The latter requires much labor 
to prepare the meteorological data. Recently, a new 
method based on the chaos theory (deterministic nonlinear 
prediction method) has been developed. This methodology 
has been applied to the prediction of stock prices, 
electricity demand and water supply. An outline of the 
method is that ; if a time series data has chaotic 
characteristics, the system which generates the time 
series can be considered deterministic and nonlinear. The 
dynamical rule of the system is estimated conversely from 
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the time series data. Once the hypothetical dynamical 
rule has been estimated, the near future of the time 
series is predicted using the assumed dynamical rule. Two 
attractive features of this method are that only time 
series data is needed and there is a possibility of 
prediction with high accuracy. In this study, it is 
investigated whether the obtained time series data of the 
significant wave height has chaotic characteristics. 
Furthermore the deterministic nonlinear prediction method 
is applied to the prediction of the significant wave 
height. 

2. Chaotic characteristics of the obtained data 

The data of the significant wave height were 
obtained at the Tottori, Fukui and Miyazaki port in 
Japan. These data are part of NOWPHAS 1991-1994. Location 
of the observation points is shown in Figure 1. Length 
and acquirement rate of the data are indicated in Table 
1. Linear interpolation is used for lack of data which is 
less than continuous 10 times. First of all, it is 
necessary to verify the chaotic characteristics of the 
significant wave height data. The method of trajectory 
reconstruction by delay coordinates (Takens(1981)) is 
used for that purpose. A set of m-dimensional vectors Xt 

are made of the time series {x,} . 

Xl   —   \     Xt   ,   X1+r   , ... , X1+(m_[y 

X-n —  I Xn   > Xn*r > ••• > Xn+(m-l)r   ] ( -^ ) 

where, r is delay time. These vectors represent points in 
the m-dimensional phase space and a trajectory is constructed 
by connecting these points. Figure 2 illustrates making 
of 3-dimensional vectors from a time series schematically. 
Figure 3 is a schematic diagram of a trajectory that is 
reconstructed in the 3-dimensional phase space. Two methods 
are proposed to investigate whether a time series is 
chaotic. One is based on geometric characteristic of the 
trajectory, and the other is related to dynamical 
characteristic of it. In this study, the geometric 
characteristic of the trajectory is examined using the 
correlation integral method described in 2.1. The dynamical 
characteristic is examined using the Lyapunov exponent 
described in 2.2. 

2.1 Correlation integral method 
If a trajectory reconstructed from a time series 
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Figure 1. Location of the observation points 

Table 1. Length and acquirement rate of the data 

point period 
number 
of data 

acquirement 
rate 

Tottori 
Jan.'91 ~ Jul.'92 

(19 months) 
6868 96.8 % 

Fukui 
Apr.'91 ~ Apr.'94 

(37 months) 
13512 99.4 

Miyazaki Jan.'92 ~ Nov.'94 
(35 months) 

12780 98.8 

data has fractal structure, there is a possibility that 
the time series is chaotic. Grassberger and Procaccia(1983) 
proposed a method to calculate fractal dimension of the 
trajectory by the correlation integral. The correlation 
integral is defined by Eg.(2). 

Cm ( £ ) = -i- 2 H   £ - X - X (2) 

where, H(t)   is the Heaviside function, Xt-Xj     represents 

distance between vector X, and Xj. The correlation integral 

is calculated for variable E respectively. If a part of 
plotted (logE, log C""(s)) is approximately on a straight line, 
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Figure 2. Making of vectors from a time series 

Figure 3. Reconstructed trajectory 

the slope is defined as the correlation exponent v(m). 
Furthermore, if the correlation exponent converges to a 
certain value Dc following the increase of the phase 
space dimension m, DQ represents the fractal dimension of 
the reconstructed trajectory. That is, the time series 
was generated by a deterministic nonlinear system, and it 
is estimated that the degree of freedom for this system 
is more than D0. In this study, the correlation integral 
is calculated under the following conditions; r=10,20,30 
and 40 hours, m=5,6,7,8,9,10,12,14,16,18,20,22,24,26,28,30 
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and 35. Figure 4.(a), (b) and (c) illustrate the results 
of the correlation integral. These are the cases for the 
significant wave height data of Tottori, Fukui and Miyazaki 
respectively. Figure 5.(a),(b) and (c) show the correlation 
exponents which were obtained from Figure 4. In the cases 
of Tottori (Figure 5.(a)) and Miyazaki(Figure 5.(c)), the 
correlation exponent tends to converge. Therefore, there 
is a possibility that the significant wave height data of 
Tottori and Miyazaki are chaotic. In the case of Fukui (Figure 
5.(b)), the tendency shown in the others is not distinct. 
The possibility that the data of Fukui is chaotic can not 
be found from this result. 

2.2 Lyapunov exponent 
Trajectory instability is a dynamical characteristic 

of chaos. It means that a distance between a point on the 
reconstructed trajectory and its near neighboring point 
increases exponentially with time development. The Lyapunov 
exponent is an index to represent change rate of the 
distance. If the Lyapunov exponent is a positive value, 
the distance is extended exponentially. Therefore, the 
trajectory is considered to be unstable. Sano and 
Sawada(1985) proposed a method to compute the Lyapunov 
exponent using a time series data. The procedure for 
this method is as follows. First, a point on the reconstructed 
trajectory is denoted with Xt, and its near neighbors Xki 

(i=l,---,M) are looked for. Displacement vectors between 
Xki   and X,   are given as ; 

yt = xki-xt (3) 

The center point Xt moves to Xt„ and the points Xki shift 
to Xki+X after the time x. The displacement vectors zt are 
as follows: 

Zi = ^-kH-T ~ -*<+T ( 4 ) 

If the absolute values of yt and z, are small sufficiently, 
z,  can be expressed by Eq.(5). 

Zi = A,yt (5) 

The matrix At   is given as; 

AtV-C 

vu =M & Jilyn     '     °U~M & Ziky'! (6 * 
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where, y,j:k-th component of y,, zlt:k-th component of zt. 
The matrix A, is used for computing the Lyapunov exponent. 
A set of orthonormal system [ut(t)} (i=l,---,m) is given 
as an initial condition, and the matrix A, operates on 
the orthonormal system. Eq.(7) represents this operation. 

e,(t + x) = Atul(t) (7) 

Furthermore, et(t + x) is orthonormalized by the Gram-Schmidt 
method (e.g., Shimada and Nagashima(1979)); 

e,' (t + x) = ei(t + x)- 

lr (et(t + r), Uj(t + T)\Uj(t + T) (8) 

e- (t + x) 
ut(t + x) = r^ —{ (9) 

I et  ( t + x ) I 

where, <,> denotes the inner product. In the next step, 
At+%, et{t + 2x), el(t + 2x) and ut(t + 2x) are computed, le- (t)\ , 

which expresses a set of e- , is obtained by repeating 

this procedure. The Lyapunov exponent Af (i=l, • • • ,m) is 
given by Eq.(lO). 

^=^a^l i°s|{«/(o} (10) 

Figure 6. (a), (b) and (c) show the maximum Lyapunov exponent, 
which is calculated under the following conditions: delay 
time r is 10,20,30 and 40 hours, phase space dimension m 
is from 5 to 15 and number of iteration N is 200. Because 
all of the maximum Lyapunov exponents are positive, the 
significant wave height data are considered to be chaotic. 

3. Deterministic nonlinear prediction method 

If a time series data is chaotic, the time series is 
considered to be generated by a deterministic nonlinear 
dynamical system. However, the dynamical rule of this 
system is unknown. It is necessary to estimate the 
dynamical rule conversely from the obtained time series 
data. In this paper, the reconstructed trajectory is 
divided into small sections, and a local dynamical rule 
is estimated for each section. The conception of Farmer 
and Sidorowich(1987) and the above-mentioned procedure of 
Sano and Sawada is applied to estimation of the local 
dynamical rule. In other words, the matrix At given by 
Eq.(6) is an approximation of the local dynamical rule. 
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The procedure to predict near future of a time series is 
as follows: 
1) Take the vector which contains the latest data as Xt 

in Eq.(3). 2) Look for Xki (i=l,2, • • • ,M+1), which are the 
close vectors to X,. 3) Permute Xki in the order of 
increasing distance to Xt. Therefore, Xkl is the nearest 

vector. 4) Set the displacement vectors yt- Xki-Xkl (i=2,--- 
,M+1) and yp = X,-Xkl . 5) Obtain the displacement vectors 

Z; = Xki+T-Xkl„ (i=2, • • • ,M+1). 6) Compute the matrix A, by 
Eg. (6). 7) Calculate zp = Atyp and XHZ = Xkl+Z + zp . 
The m-th component of Xt+X is the predicted value of the 
time series. In the prediction of the significant wave 
height, the following steps are taken furthermore; With 
changing M in the range of [m+2, 2m+30], compute Xt+Z for 
each M. From first to (m-l)th (or (m-2)th) component of 
the predicted Xt+r corresponds to the observed time series 
datum. Pick up five Xt+X whose sum of the square errors 
between the components and the observed data are small. 
Define the mean of m-th components as the predicted value 
of the significant wave height. When all X,+T include 
negative component in the above range of M, the prediction 
is considered to be impossible. 

4. Prediction of the significant wave height 

The significant wave height is predicted by the 
procedure described in the section 3.  The conditions 
under which the prediction is performed are as follows: 
Tottori; The delay time r is 20 and 30 hours, the phase 
space dimension m is 10 and 12. 

Fukui and Miyazaki; r is 10 hours and m is 10. 
The prediction value is computed every 6 hours, that is, 
at 0,6,12 and 18 o'clock every day. The following two 
criteria are used to evaluate the accuracy of the prediction: 
Criterion I (Goto et.al.(1993)); 

I Hp-H„  I £ 0.3 (m) (H0Z  1.0 (m)) 
(11) 

\
H

P~
H

O \l H0*  0.3    (#o*1.0(m)) 

where H0   is the observed significant wave height and Hp 

is the predicted one. The fitting rate is defined as 
Nr/Nt. Nr is the number of the predicted values which 
are in the range of Eq.(ll), and Nt is the total number 
of the prediction. 

Criterion II; Both the observed and predicted significant 
wave height are more or less than a set standard wave 
height of 1 meter. 

The results of the prediction are as follows. 
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Table 2. Fitting rate (Tottori) 

r = 20 hours r = 30 hours 

m = 10 m = 12 m = 10 m = 12 

Fitting 
rate I 

Jan. '92 

Apr. 

42.7 % 

56.7 

42.7 % 

55.8 

42.7 % 

38.3 

33.1 % 

42.5 

Fitting 
rate II 

Jan. '92 

Apr. 

71.0 % 

80.0 

71.0 % 

86.7 

70.2 % 

60.8 

56.5 % 

64.2 

Table 3. Fitting rate 

Tottori Fukui 
\ 

Miyazaki 

6-hour 12-hour 6-hour 12-hour 6-hour 12-hour 

Jan. '92 58.1 % 42.7 % Jul. '93 79.8 % 66.9 % Jan. '94 76.6 % 61.3 % 

Fitting Apr. 63.3 55.8 Oct. 70.9 48.7 Apr. 80.0 60.8 
rate I Jul. 71.3 55.9 Jan. '94 67.7 40.7 Jul. 78.9 69.1 

- - - Apr. 71.2 56.7 Oct. 79.0 61.3 

Jan. '92 75.8 % 71.0 % Jul. '93 85.5 % 80.6 % Jan. '94 80.6 % 72.6 % 

Fitting Apr. 82.5 86.7 Oct. 83.8 72.6 Apr. 84.2 78.3 
rate II Jul. 85.1 89.2 Jan. '94 84.7 70.2 Jul. 81.3 75.6 

- - - Apr. 85.8 79.2 Oct. 85.5 79.8 

Tottori: First, the 12-hour prediction for January and 
April 1992 was performed to compare the accuracy under 
the conditions of r=20,30 and m=10,12. Table 2 shows the 
fitting rate I and II, which are based on the criterion 
1 and II respectively. The difference between r=20 and 
r=30 can be seen, however, the difference between m=10 
and m=12 in the case of r=20 is not distinct. The 
12-hour prediction for July 1992 and the 6-hour prediction 
for January, April and July 1992 were obtained under the 
conditions of r=20 and m=12. The fitting rates are shown 
in Table 3. 

Fukui and Miyazaki: The 6-hour and 12-hour prediction 
was performed under the conditions of r=10 and m=10. 
The objects of the prediction are July, October 1993, 
January and April 1994 in Fukui, and January, April, 
July and October 1994 in Miyazaki. The data of the past 
2 years was used for the prediction. The fitting rates 
are shown in Table 3. 

Figure 7.(a),(b) and (c) illustrate a part of the results, 
in which the solid line is the observed value and the 
dotted line with closed circles is the predicted value. 
In the cases of the 6-hour prediction, the predicted 
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Figure 7.( a )  Results of prediction (Tottori) 

  ; observed, ••••••   ; predicted 

6- 

-  2- 

04 
iM '\^>. 

0 

6- 

?  4- 

^2" 

0-1 

200 

*M « 
T^ 
0 200 

Apr. 1994 6-hour 

6'vr    5 

400 600 
hours 

Apr. 1994 12-hour 

^vlJWLft. '.^.v.   .'.•: V.. 

400 600 hours 

Figure 7.( b) Results of prediction (Fukui) 

   ; observed, ••••••   ; predicted 



876 COASTAL ENGINEERING 1996 

hours 

hours 

Figure 7.( c) Results of prediction (Miyazaki) 
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agree comparatively with the observed. However, time lags 
and fluctuations of the predicted become large in the 
cases of the 12-hour prediction. 

5. Conclusion 

In this study, the prediction method based on the 
chaos theory (deterministic nonlinear prediction method) 
was applied to the significant wave height data. The data 
whose length were from 19 months to 37 months were used 
for the prediction, and a certain of the applicability 
was found. However, it is necessary to improve the 
prediction accuracy. To increase the number of the data 
and to improve the estimation method of the local dynamical 
rule are mentioned for that purpose. 
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