
CHAPTER 67 

Weakly non-Gaussian model of wave height 
distribution for nonlinear random waves 

Nobuhito MORI * and Takashi YASUDA t 

ABSTRACT 
The wave height distribution with Edgeworth's form of a cumulative 
expansion of probability density function(PDF) of surface elevation 
are investigated. The results show that a non-Gaussian model of 
wave height distribution reasonably agrees with experimental data. 
It is discussed that the fourth order moment (kurtosis) of water 
surface elevation corresponds to the first order nonlinear correction 
of wave heights and is related with wave grouping. 

INTRODUCTION 
Wave height statistics(e.<7. wave height distribution, run length and etc) of 

random waves play important roles in designing coastal and ocean structures. 
The Rayleigh distribution is regarded as the distribution of wave heights in 
stochastic processes with a linear and narrow banded spectrum. Over a few 
decades, a considerable number of studies have been made on the validity of the 
Rayleigh distribution. It is commonly known that large wave heights in field do 
not necessarily obey the Rayleigh distribution. For example, Haring(1976) shows 
that large wave heights observed in storms are on the order of 10 percent less 
than those predicted by the Rayleigh distribution. After that, Forristall(1984), 
and Myrhaug and Kjeldsen(1987) also reported that occurrence probabilities of 
large wave heights in field are smaller than the predicted value of the Rayleigh 
distribution. 

On the contrary, Yasuda et al. (1992,1994) numerically investigated that 
the third order nonlinear interactions have significant effects on the statistical 
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properties of random wave train. That is, the third order nonlinear solution 
in deep water increases the occurrence probabilities of large wave heights more 
than the linear and second order one do. Stansburg(1993) also found the same 
results in his experimental work. However, there is no theoretical distribution 
which agrees with the data, although many studies have attempted to estab- 
lish the wave height distribution without a linear or narrow banded spectrum 
assumption. 

The Rayleigh distribution is put to practical use under the assumption that 
water surface elevations are regarded as independent stochastic processes, since 
the nonlinear wave-wave interactions are weak in deep water. Thus, the prob- 
ability density function of the surface elevation had been assumed to be the 
Gaussian on the basis of the central-limit theorem. For the statistical point of 
view, the fourth order moment of the surface elevation is directly related to the 
third order nonlinear interaction(Longuet-Higgins 1963). It is therefore neces- 
sary to include the effects of the fourth order moment of the surface elevation 
for the wave height distribution to consider the influences of the third order 
nonlinear interaction. 

In this study, a wave height theory is extended for a weakly nonlinear ran- 
dom waves with cumulative expansion of surface elevation including the fourth 
order moment and then its validity is checked with experimental data. 

PDF OF WAVE HEIGHTS 

Probability density function of surface elevation 

According to statistical theory, the probability density function(PDF) p^(x)dx 
of the /-independent variables X{ {i € Z} (subscript i is dropped hereafter for 
simplicity) can be described as 

00 

pV\x)dx = Y, crHr(x)G(x) dx, (r e Z) (1) 
r=0 

G(x) = ^Lexp (~) , (2) 
2i" 

where Hr{x) is the Chebyshev-Hermite polynomial, G(x) the Gaussian and cr 

the rth order coefficient of the Gram-Charlier expansion. The convergence of 
the Gram-Charlier expansion is not monotonic with the order r(e.g. C4=0(l~l), 
c5=0(Z-3/2)), although the convergence of the rth order cumulant «W is inde- 
pendent of I. We hence choose the Edgeworth asymptotic expansion to describe 
the PDF of surface elevation. 

Introducing the characteristic function and collecting the terms for I, the 
Edgeworth expansion of type A is formally given by (e.g. Kendall and Stuart 
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1963) 

1   K3 
pW(x)dx = G(x){ 1 + -^^-H3(x) + 

vr 6 £H<(x) + %Ht(x) 

+ 
iVl L120 \

H6\X) + T7TH^X) 144 
+ ' cfe, (3) 

where Kr is the rth order cumulant. The rth order cumulant has the relationship 
to the rth order moment /ir: 

«i = 0 

K4 = fii — 3 

«5 = M5 - 10/X3 

«6 = M6 - 

K7 = fJ,7-21 fl2/J.5 

15^4 - 10/il + 30 
35//3/i4 + 210/^2^3 

(4) 

We set the mean value fix so as equal to zero and normalize all the variables 
by the standard deviation. Therefore, fi3 is skewness and /j,4 is kurtosis. Each 
component within the bracket [•] of eq.(3) has monotonic convergence for /(the 
typical notation for I is dropped hereafter for simplicity). 

It must be noted that an asymptotic expansion does not have monotonic 
convergence for higher order corrections, although it sometimes gives good agree- 
ment for a first few terms. Moreover, higher order moments and cumulants are 
influenced by sampling frequencies of data. We, therefore, use first three terms 
of eq.(3) to describe the PDF of the surface elevation. The influences of trunca- 
tion of eq.(3) are already discussed in detail by Mori(1996). We truncate here 
higher than l/l\fl terms of eq.(3) following Mori(1996). This truncation gives 
the following relationship to the moments 

«5 = Ms - IO//3 = 0, 

K6 = f^6~ 15/L44 + 30 = 0. 

(5) 

(6) 

The validity of these assumptions will be examined in next section. 

Distribution of wave height 

We assume that waves to be analyzed here are unidirectional with nar- 
row banded spectrum and satisfy the stationarity and ergodic hypothesis. The 
surface elevation hence can be evaluated by the characteristic frequency Q: 

hit) — Yl an C0S[(CJ„ - w)t + Sn] 
n=l 

00 

^»(*) = 12 an sin[(wn - W)i + en] 

(7a) 

(7b) 
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where an is the amplitude of the nth mode, u)n the angular frequency and en the 
phase function. If en is distributed uniformally and is a temporally independent 
variables, eq.(7) give a linear random wave field. The surface elevation rj{t) is 
rewritten into the amplitude of wave envelope R(t) and phase angle 9(t) with Ic 

and /.: 

Tf(t) = R(t) cosfit + 9(t)} 

6{t) = tan"1 f/s(i) 

W) 

(8a) 

(8b) 

(8c) 

Under the assumption that the PDF of Ic and Is are described by eq.(3) up 
to l/l terms, Ic and Is are independent statistical variables. Integration of 6(t) 
over the range from 0 to 2w results in the following PDF of wave amplitude 

1        (   R2 

p(R)dR=—exp {-— \ + Yi
ahiAiAR) 

i,3 

dR, (9) 

where J2 is a special double summation for i,j(i=4,6 and j—i/2), Aij(R) is 

polynomial for i?(see Appendix) and OHJ is the coefficient with ix% and \ic 

«4,i = p(^4-3) 

^4,2 — ^^^(^ _ 3) 

"6,1 = 2^F ^3 

<*6,2 = 2ISX32M3(M4 
_ 3) 

"6,3 = 5i6^F A*3 

(10) 

The assumption that Ic and Is are mutually independent is inadequate for strong 
nonlinear waves(^3 > 0.30, see Mori 1996), but we should keep this assumption 
in this study. 

By assuming a narrow banded spectrum for a wave field, a wave height 
H is regarded by two times of its amplitude A (H=2A). This assumption is 
inadequate when the vertical asymmetry of surface profile is not negligible(«.e. 
/Z3—> large). Therefore, eq.(10) is valid for a weakly narrow banded process(//3 <C 

!)• 

The assumptions of a weakly nonlinear and narrow banded spectrum give 
the wave height distribution as 

H        I    FT2 

P(H)dH=-zxp(-— l + 'ZfrjBijW dH, (11) 
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(b) For the case of ^3=0 

Figure 1 The variation of PDF of wave heights for the fixed 
value of fa and in. 
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Figure 2 The   exceedance   probability   of  wave   heights   for 
^4=2.75 and 3.25 with /J,3=0. 

where, 

Pa — 2?(/*4 — 3) 

/^42= 3^22r(/i4 - 3)2 

P61 — 2i2X32 ^3 

A>2 = 22373? /*3 (/*4 - 3) 

Ai3 = 228^34 (4 

(12) 

and Bij(H) is polynomial for if (see Appendix). 

The exceedance probability of wave heights is given by integrating eq.(ll) 
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Table 1 Wave statistics of typical two cases. 

Case m kp(ii/3 at PI breaking ratio 
1 
2 

10 
10 

0.10 
0.20 

0% 
10% 

between [H, oo) as 

P(H) = exp 
F2 

(13) 

where Eij(H) is polynomial for //(see Appendix). 
The first point to be noticed is that the additional terms within brackets}-] 

in eqs.(9), (11) and (13), which are related to non-Gaussian properties of the 
PDF of surface elevation, are equal to zero when ^3=0 and /i4=3(i.e. Gaussian). 
Therefore eqs.(9) and (11) with /x3=0 and /i4=3 are the same the Rayleigh dis- 
tribution. We shall, hence, call with distribution of this type as the Edgeworth- 
Rayleigh distribution. The second important point to be noted is that the first 
order correction to the wave amplitudes or wave heights is kurtosis(a4j or /?4j-)- 

Figure 1 show the variation of the PDF of the wave heights on the values 
of 1x3 and /z4. For the case of //,4=3 case, Fig.l(a), the shape of the PDF of 
the wave heights is not varied as increasing the value of /i3. However, Fig. 1(b) 
shows that the peak of the PDF is shifted to gently as increasing of /z4, because 
/x4 is the first order correction of the wave height distribution. Figure 2 shows 
the exceedance probability of the wave heights for the case of /L*4=2.75 and 3.25 
with /i3=0. The occurrence probability of the larger wave heights exceeds that 
of the Rayleigh distribution is increased when the value of /i4 is larger than 3. 
We can summarize that the value of kurtosis is dominated parameter for the 
PDF of wave heights. 

RESULTS 
The laboratory experiment was conducted in the glass channel and is 65m 

long, lm wide, 2m high and was filled to a depth of about 1.0m. Waves were 
generated by a computer-controlled piston type wave paddle. Water surface 
displacements were measured with twelve capacitance type wave gages. The 
measurements with a sampling frequency of 32Hz were performed for over 330s. 
No corrections were applied for filter response of the wire. 

The initial spectra were given using the Wallops type spectra with band 
widths of ro=5, 10, 30, 60 and 100, and peak frequency of /p=lHz which gives 
a spectral peak wavenumber fep=4.072m_1 and a characteristic water depth of 
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(b) Spatial variation of (J,4 and fi6 

Figure 3 The spatial variations of the higher order moments of 
surface elevations of the case 1 and 2. 

kph=3.99, so that the waves were deep water waves. Here, h is the water depth. 
The number of waves were about 350-450. The maximum frequency of gen- 
erated waves were 2Hz. Therefore, higher frequency components of generated 
waves were generated by nonlinear interaction. Initial phases of the waves were 
given by uniformly distributed random numbers. The initial characteristic wave 
steepnesses kpa,i/3 were set about 0.1 to 0.25. Here, ai/3 is a half of the significant 
wave height. Breaking waves were observed for higher waves with the steepness 
that the value of kpai/3 is larger than 0.13. For example, the visually observed 
breaking ratio is about 10% for waves with the initial steepness of kpa,i/3 = 0.20 
and 20% for 0.14. Consequently, waves of 24 cases were generated under the 
combination of the spectrum bandwidth parameter m and the wave steepness. 
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Figure 4 Relationships among the higher order moments, n%, 
Hi, fi5, H6 and /x7. 
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Typical measured two cases are shown in Table 1 for breaking and non- 
breaking cases. The spatial variations of higher order moments for case 1 and 2 
are shown in Fig.3. These show that the higher order moments are fluctuated 
until the location 20m distant from the wave generator(that is about 13 wave 
lengths of peak frequency). There are marked increase in the moments more than 
20m away from the wave generator. All of the higher order moments are not 
equal to the Gaussian, more and less. The odd order moments /*3 and /x5 seem 
to level out 20m away from wave generator, although the even order moments 
Hi and fie are still increased. The higher order moments are generally influenced 



858 COASTAL ENGINEERING 1996 

f 

100 

10-i 

10-2 

^    10-3 b- 

10-4 

10-5 

Exp. data 
' Gaussian 
• Fdieworth orth   jC*fr\ 

//•: 

I        I 

I        I 

-2 0 

Figure 5 PDF of the surface elevation of experimental data of 
case 1 at location 8. 

by the sampling frequency, but these trends do not depend on the sampling of 
data in our experiments. In addition, the spatial variations of //5 and /z6 are 
similar to those of (13 and /x4, respectively. These indicates the non-Gaussian 
properties of surface elevations. 

The experimental data show that the higher order moments are not con- 
stant. It should be examined the relationship between the higher order moments. 
The (n+2)th order cumulant is related to the nth order cumulant at the low- 
est order correction. Hence, the higher order cumulants than the 5th one are 
assumed zero to formulate the Edgeworth-Rayleigh distribution: 

«5 = fJ-5 - 10^3 = 0 

Kd = M6 ~ 15/Z4 + 30 = 0 

In order to check the validity of these assumptions, the relationships between fi3 

and /U5, (14 and fig, and /X3 and /x4 are examined, respectively and are shown in 
Fig.4. Circles denote experimental data and solid lines in Fig.4(a) and Fig.4(b) 
are given by the eq.(5) and eq.(6), respectively. The correlation coefficient be- 
tween /i5 and fj,3 is 0.71, and therefore /i5 could be regarded as a linear dependent 
variable on [13. fig is also strongly related with /i4(the correlation coefficient is 
0.97). The experimental data show quite good agreement with eq.(6) in which 
the value of /z4 is less than 4. Marthinsen and Winterstein(1992) derived the 
relationship between [13 and /i4 from the second order kernel functions: 

,4       x2 

M = 3 + (-/i3J (14) 

The solid line in Fig.4(c) indicates eq.(14). However, there is no obvious rela- 
tion between /*3 and /i4 from the data(the correlation coefficient is 0.21). Conse- 
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(a) Case 2 at location 5 (b) Case 1 at location 5 

(c) Case 1 at location 8 

Figure 6 The PDF of wave heights at several locations. 

quently, it follows from what has been said that the 5th and 6th order cumulants 
can be regarded as zero(i.e. eqs.(5) and (6) are valid), if the value of /i3 is smaller 
than 0.3 and /i4 is smaller than 4. And the value of /J-4 is independent on fi3. 

The PDF of surface elevation of case 1 at location 8 is shown in Fig.5. The 
histogram is experimental data, dotted line is the Gaussian and solid line with 
circle is eq.(3) up to 1/7 terms. The Edgeworth expansion shows agreement with 
experimental data in comparison with the Gaussian. 

The PDF and exceedance probability of wave heights are shown in Figs.6 
and 7, respectively. The histogram and filled circles • denotes experimental 
data, dotted line the Rayleigh distribution and solid line the Edgeworth-Rayleigh 
distribution. There are no significant difference between the Rayleigh and the 
Edgeworth-Rayleigh distribution for the PDF of wave heights. However, the 
Edgeworth-Rayleigh distribution for the exceedance probability of wave heights 
show good agreement with the experimental data in comparison with the 
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Figure 7 The exceedance probability of wave heights at several 
cases and locations. 
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Figure 8 Relationships between /i4, GF and the Weibull mod- 
ulus mw, and GF and \i\. 

Rayleigh distribution. The number of waves decrease as wave heights getting 
larger, so the number of waves are quite few in the range H/rjrms > 5 in Fig.7. 
The Edgeworth-Rayleigh distribution agrees with the experimental data, even 
if the number of waves are not so many. Moreover, the Edgeworth-Rayleigh 
distribution agrees with the experimental data for larger value of /i4(/i4 > 4), 
such as Fig.7(c). 

RELATIONSHIP BETWEEN WAVE HEIGHT 
AND WAVE GROUPING 

Before move to conclusion, it should be added that the relationship between 
the PDF of wave heights and wave grouping. Mase(1989) investigated an empir- 
ical relationship between the groupiness factor(GF) and the PDF of wave height 
with the Weibull modulus mw of single parameter of the Weibull distribution. 

GF is defined as 

GF = ]J~Jo
0lE(t)-E}2dt/E, 

E{t)= [TP V2(t + r)(l-\T\/Tp)dr, 

(15) 

(16) 

where E(t) is SIWEH, E a mean value of E(t), T0 an observation period and 
Tp the spectral peak period. If we substitute the delta function S(t — r) into 
the numerical trigonometric filter 1 - \T\/TP of eq.(16), we obtain the following 
simple relation 

GF' = ^ Hi (17) 
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This means that if we do nit use the numerical filter to calculate GF, there is a 
direct relation between GF and kurtosis /x4. We already know that kurtosis //4 

is the parameter which controls the wave height distribution. That is, both the 
parameters the Weibull modulus and /i4 govern the wave height distribution. 
Therefore, there is a obvious relation between kurtosis and GF. That is the 
reason why the Weibull modulus mw governing the wave height distribution 
depends on GF. The relationship between GF and the Weibull modulus, and 
GF and /i4 are shown in Fig. 8. These relations can be summarized as 

GF~ /i4 ~ m,,. (18) 

The relationship between the Weibull modulus and GF has not a physical 
meaning so that we suggest to use kurtosis instead of GF to represent the wave 
grouping. Moreover, GF suffers from the influence of the numerical filter to 
obtain SIWEH. Therefore, the value of GF is influenced by two characteristics of 
random waves as a shape of wave height distribution and a spectrum band width. 
In other words, GF is insufficient as the fundamental statistical parameter to 
represent properties of the random wave. 

CONCLUSION 
A weakly non-Gaussian model of wave height distribution referred here as to 

the Edgeworth-Rayleigh distribution is suggested for waves with narrow banded 
spectra. It is found that the first order correction of the wave height distribution 
is equal to the fourth order moment of the surface elevation. It is also made 
clear that the occurrence probability of larger wave heights increases with the 
increasing of the value of kurtosis. The experimental data show good agreement 
with the Edgeworth-Rayleigh distribution within /z3 <c 1 and /i4 < 4. 
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APPENDIX 

AiA(R) = R4 - 8R2 + 8 
Ait2 (R) = -R8 - 32R6 + 288RA - 768i?2 + 384 
A6,i(R) = R6 - 18R4 + 72R2 - 48 
A6fi{R) = R10 - 50.R8 + 800.R6 - 4800.R4 + 9600.R2 - 3840 
A6,3(R) = R12 - T2RW + 1800R8 - 19200.R6 + 86400i?4 

-138240.R2+ 46080 

(19) 
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B4,i(H)= #4 - 32H2 + 128 
B^IH) = H8 - 128H6 + 4608.ff4 - 49152ff2 + 98304 
B6,i(H) = H6 - 72i?4 + 115H2 - 48 
Be^tf) = Hw - 200H8 + 12800#6 - 307200H4 + 2457600if2   \ (20) 

-3932160 
B6<3(H) = H12 - 288H10 + 28800#8 - 1228800ff6 

+2211840J74 - 141557760B/2 + 188743680 

Eitl(H)= H2(H2-16) 
Eit2(H) = H2(H6 - 96if4 + 2304ff2 - 12288) 
E6ti{H) = i/2(#4 - 48H2 + 384) 
E6t2(H) = H2(H& - 160#6 + 7680J74 - 1228800F2 + 4915200) 
E^(H) = H2(H10 - 240-ff8 + 19200if6 - 614400#4 

+7372800.ff2 + 23592960) 
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