
CHAPTER 52 

THE DIGITAL SIMULATION OF NON-LINEAR RANDOM WAVES 

Kyungmo Ahn * 

Abstract 

This paper presents the method for the digital simulation of the second-order nonlinear 

random waves including strongly nonlinear shallow water waves and near breaking waves, 

which can be considered to be non-Gaussian random process. The method generates time 

series of the second order nonlinear random waves from the given energy spectrum and 

bispectrum obtained from the wave records. Numerical examples indicate that the 

procedure is basically worked well and generated time series of waves having the similar 

target spectral density function and probability distribution function. The proposed 

method has a wide range of applicability to problems involving the second-order nonlinear 

systems where outputs have strongly nonlinear and non-Gaussian characteristics. 

Introduction 

The time series simulation of nonlinear random waves has many practical applications 

in many engineering problems. For example, the simulated waves can be used for the 

analysis of the response of offshore structures excited by irregular waves (Duncan and 

Drake, 1995) and also can be used as wave-board control signals to generate nonlinear 

random waves (Klopman and Leeuwen 1990; Yasuda et al. 1994). 

For the realistic reproduction of coastal waves, it is necessary to include the effects of 

the second-order nonlinear waves associated with the sum and difference frequency 
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components of linear waves. For weakly nonlinear waves, the second-order random wave 

theory derived from the perturbation method using potential theory can be used to derive 

formulas for the generation of second-order random waves (Sharma and Dean, 1979; 

Klopman and Leeuwen 1990). However, the method cannot be used to generate strongly 

nonlinear waves in shallow water. 

Recently, Ochi and Ahn (1994) developed a method to separate bound harmonic wave 

components from free linear wave components by applying the concept of the bicoherence 

spectrum. When various spectral components interact with one another due to 

nonlinearities, the resulting components are phase coherent with the primary components. 

Therefore, those components are not considered to be statistically independent. The 

bispectrum, which measures the statistical dependence of three spectral components whose 

sum frequency is zero, may therefore be an useful tool to investigate the nonlinearities of 

random waves especially in shallow water waves. By applying the concept of a bicoherent 

spectrum, it is possible to separate the linear free wave spectral component from the 

spectrum obtained from the measured wave profile record. Then, by using the separated 

linear spectrum and bispectrum, we can digitally simulate the strongly non-linear random 

waves which have the similar stochastic characteristic of the target waves. 

Digital Generation of Second-Order Nonlinear Random Waves. 

In this paper, a method is presented to generate time series of strongly nonlinear waves 

from the linear energy spectrum and bispectrum of surface elevation obtained from the 

wave record. For this, we first write surface profile of second-order random waves in finite 

water depth as follows: 
N 

(1) 
+ Re £ f ckc\qkle

{2^+f'),H^ei)} + ^(/.-/.'M'.-..)}! 
i=l   1=1 *• * 

where f= frequency, £=phase lag, QM- wave-wave sum interaction coefficient 

associated with fk + ft, and fkl = wave-wave difference interaction coefficient 

associated with fk-fr 

According to Ahn (1993), wave-wave interaction coefficients  Qkl  and rkl can be 
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represented as follows: 

qkl   «    -^-fi, (/,,/,) (2) 
s I s , 

r„, *  -TT-{•»(/„/* -  /,)- B. (/*./,)} (3) 

2       2 2       2 where   m = 1   for  k^l, m = 2   for   k = l, s,=c, 12,   s, = c. 12   represent the 

discrete linear spectral wave energy components at frequencies fk and f,, respectively. 

B(f,, /,) denotes the bispectrum which is formally defined as the Fourier transform of 

the second-order covariance function (Hasselmann et al., 1963). The bispectrum can also 

be expressed in terms of Fourier coefficients (Kim and Powers, 1979) as follows: 

B(fk,f,) = E[Y{fk)Y(f,) Y\fk +/)] (4) 

where y(fk ) is the complex Fourier coefficient for frequency fk and the asterisk denotes 

the complex conjugate.  B (/,, /,) represents the portion of the bispectrum which is due 
SKI 

to wave-wave interactions of sum frequency components. 

From Equations (1) through (3) we can generate the time series of nonlinear random 

waves for given linear energy spectrum and bispectrum. 

Numerical Example Problem 

To verify the method proposed, a numerical example is given.   We generated 64 

records of test waves which involve three primary linear wave components at frequencies 
j\,f2   and   f3   and  non-linear  wave  components  generated  from  interactions  of 

components at frequencies _/], f2 and f3. 

Let's consider a test waves such that 

y{t) =   Re^c^2^*' + Re£ tctc,L'f(2*t2^''+,1'l +ry{(2*l+2*!M..-.,)}] 
*=1 K=\       1=1 l * 

-   c, cos(2^/j/ + £•]) + c2 cos(27f2t + s2) 

+   cfru cos(47tfit + 2s^) + clr22 cos(4nf2t + 2s2) 

+   2cxc2ru cos((2^ + 2nf2)t + (*, + s2)) 

+2clc2qu cos((2^ -2nf2)t + (e} - e2)) (5) 
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where    f3 = fx + f2 .    The phases of each wave were independently taken from a set of 

uniformly distributed random numbers between 0 and In. Fig. 1 shows the energy 
spectrum of test waves y(t) . The wave energy in the spectrum corresponds to 

frequencies from the lowest to the highest frequency f2 - fx, fx,f2, 2/,, f3 = /, - f2, 

and 2f2 respectively. The wave energy at 2fx , 2f2 and f2 - fx is entirely due to 

self-interactions of fx and f2 and difference interactions of fx and/2 . A portion 

of the energy at f3 = fx +f2 is due to the sum interaction of waves at fx and/2 

and   the rest of the energy at f3    is due to the free linear wave component. 

The wave-wave difference interaction coefficient rke in Eq(3), can be obtained from 

the bispectrum and corresponding linear energy spectral components. In evaluating the 
interaction at the frequency fx—f2, it is assumed that the spectral energy density at 

frequencies smaller than the minimum frequency fs  is entirely due to the nonlinear 

interactions associated with the difference between various combinations of the two 
frequency component at fx and/2. Furthermore, noting that Y(fK=Y*(-fK)) for 

real y(t) , it can be shown that the bispectrum has the following symmetry relations: 

B{A,f2) = B{f2Jx) = B(fx-fx-f2) 
(6) 

= B{/l-f1 ~f2) = B(f2,-f1 -f2) = B{-fu-f2,f2) 

By the above symmetry relations and definition of fs, the difference interaction 

coefficient rke , can be obtained in the unique bifrequency space, B-Bs as shown in Fig 

2.    Fig.3 shows the real part of the bispectrum obtained for y(t) by using MATLAB, 

higher order spectral analysis toolbox. 
The analytically computed bispectral values for y(t) are also shown as follows: 

B(/i,/,) = E[Y(fx )Y(JX )Y * (2fx)] = ^ (7a) 
O 

B(/2,/2) = 4F(/2)7(/2)7*(2/2)] = £^ (7b) 

Kfuf2) = E\Y{fx)Y{f2)Y*(Jx +/2)] = £L^2. (7C) 

B(/2,yi -f2) = £\Y(f2)Y(fl -f2)Y*{fx)]=C^!^ (7d) 
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Fig. 1    The energy spectrum of y(t) 
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B(f} +f2, fx -f2) = E[Y(f} + f2)Y(fx -/2)P(2/)] = fe^        (7e) 

2    4 

B(2/2, fx -f2) = E\Y(2f2)Y(fx -f2)Y*(fx + /,)] = C' <•^ (7f) 

The plan view of the bispectram is drawn in Fig.4 to identify the bispectnim in the unique 

bifrequency space. As can be seen in the figure and from Eq.(7d), the difference interaction 
coefficient    ql2    is    obtained    from    B (^, _/j -/2) .        Since    bispectral    values 

^{fi + fn f\ ~/2)and B(2/2,/ ~ f2) 
m Eq.(7a,b) are order of magnitude smaller 

than B[f2,fx -f2),    we may neglect the terms in evaluating difference interaction 

coefficient. 
The energy spectral component at frequency  f3   is due to free linear wave 

component c3 cos(2^ + £3)as well as the nonlinear sum interaction of waves at    fx 

and/2.    The separation of the nonlinear energy from the total spectrum can be achieved 

approximately by applying the method proposed by Kim and Power(1979) and Ahn(1993) 

as following: 

s(fm) = sL(/m)+ Zb2(f*>f>) TO w 
fm=fk+fl 

where the bicoherence squared   spectrum is defined as 

b2(f   n = \B(JkJi)\  (9) 

\Jk,Ji)    E[\Y(kk)Y{f,f\E[\Y{fmf} 

Fig.5 shows the bicoherence squared spectrum. The computed bicoherence for the sum 
interaction is Z>2(_/j,/2) = 0.14    which implies that only 14% of the energy at /3 is due 

to the nonlinear sum interaction of the waves at /, and/2. The computed bicoherences 

for the self interactions and difference interaction are b2 (fx,fx) = 0.9969 

b2(f2,f2) = 0.9989and b2(f2,fx - f2) = 0.9980, respectively, which implies that the 

energy at 2fx,  2/2 and fx - f2 are entirely due to the nonlinear interactions. 
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Digital simulation of non-linear waves 

The time series and the histogram of y(t) in Eq.(4) are shown in Fig.6 and Fig.7, 

respectively.    In these figures, the wave profile shows a definite excess of high crests and 

shallow troughs, which is a typical feature of nonlinear waves (non-Gaussian random 

process). In the previous section, we computed the linear energy spectrum and bispectum 
of y(t) .   We now demonstrate the simulation of time series of the second-order random 

waves from the given linear energy spectrum and bispectrum. The digitally simulated 

waves should have similar stochastic characteristics such as the spectral density function 

and the probability distributions. Fig.8, shows the digitally simulated waves by the 

method proposed. Fig. 9 and Fig. 10 show the energy spectral density and the histogram of 

the simulated waves. The digitally simulated waves have good agreement with the 
target spectral density function and the probability density function of y{t) (compare 

Fig.9 and Fig. 10 with Fig.l and Fig.6). Therefore the simulated waves is proved to 

satisfy both the target spectral density and probability distribution function. The 

following table shows the statistical values of the target time series and the simulated time 

series of waves.   The agreement between them is satisfactory. 

Target time series y(i) Simulated time series 

Variance 2.48 2.83 

Skewness 1.11 1.05 

Kurtosis 4.17 3.71 

Conclusions 

A method to digitally generate the time series of second-order nonlinear random waves 

applicable to strongly nonlinear shallow water waves is developed. For the given 

bispectrum and the bicoherence spectrum, the linear spectrum is separated from the 

measured spectrum. Then, the wave-wave interaction coefficients associated with various 

pairs of sum and difference frequency components can be evaluated from the bispectrum. 

Time series of the second-order nonlinear waves are then digitally simulated using linear 

spectral components and wave-wave interaction coefficients derived from the bispectrum. 

The simulated waves have the similar spectral density function and probability distribution 
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Reproduced   Time   Series 
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Fig. 8   Portion of the time series of simulated waves 
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Fig.9   The energy spectrum of the simulated waves 
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Fig. 10   Histogram constructed from the simulated waves 
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function. A numerical example is used to verify the method developed. The simulated 

time series of waves closely reproduce the target spectral density function and probability 

distribution function. It is noted that the proposed method can be applied to wide range of 

outputs produced by the quadratic nonlinear system. The method could be applied to 

many practical engineering fields. 
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