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A Nonlinear Model for Wave Propagation 

Ting-Kuei Tsay1 Philip L.-F. Liu2 Nan-Jing Wu3 

Abstract 

Employing the Hamitonian theory, the canonical equations of water 
waves is used to derive a nonlinear model. In this paper, a unified non- 
linear model for water wave propagation is presented. This model can be 
simplified to the mild-slope equation in the linear case. It is consistent with 
Stokes wave theory when water depth is deep and reduces to an equation 
of Boussinesq's type in shallow waters. Results of numerical computations 
of nonlinear water waves propagating over a submerged bar and a rectan- 
gular step are also presented in one-dimensional case. Nonlinear behaviors 
of water waves are captured, but further works are needed. 

Introduction 

A unified mathematical model for wave propagation from deep sea 
into the coastal waters has been long in pursuit. In early seventies, the 
mild-slope equation was first derived independently by Berkhoff (1972) and 
Smith & Sprinks (1975). The mild-slope equation reduces to the Helmholtz 
equation in deep waters and constant water depth. It reduces to shallow 
water wave equation when water depth becomes shallow. Because of depth 
integration, the mild-slope equation has simplified the three-dimensional 
problem into a two-dimensional one on the horizontal plane. Although the 
original equation is derived for monochromatic waves, it has been used for 
the entire spectrum of wave frequency. Based on the mild-slope equation, 
several numerical models have been developed to describe the combined 
wave refraction and diffraction successfully (Bettess and Zienkiewicz, 1977; 
Tsay and Liu, 1983). 

In order to take other physical mechanisms, such as absorbing bound- 
ary, energy dissipation and fast-varying water depth, etc, into accounts, a 
variety of model equations has been employed to develop numerical mod- 
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els for computation of wave scattering (Chen, 1986; Kirby, 1986; Tsay et 
al., 1989). However, all of the model equations are limited to linear waves. 
The nonlinear effects can not be ignored for waves of finite amplitude or 
when linear waves propagate into the shallow water regions. For weakly 
nonlinear waves over varying topography, mathematical models have been 
proposed either using Stokes' approach or employing Boussinesq equations 
(Liu & Tsay, 1984; Witting, 1984; Liu, et al., 1985; Nwogu, 1993; Liu, 
1993). These models are limited to different water depth regimes. A unified 
model to describe wave transformation when it propagates from deep sea 
into coastal shallow water is strongly desired (Witting, 1984; Nwogu, 1993; 
Liu, 1993). 

The governing equations for weakly nonlinear water waves can be ob- 
tained by employing the Hamiltonion theory in variational calculus (Broer, 
1974). Radder and Dingmans (1985) had shown that the canonical equa- 
tions of the Hamiltonian theory can be reduced to Stokes' wave form in deep 
waters and reduced to a Boussinesq-type equation in shallow waters. How- 
ever, Radder and Dingemans did not derive an explicit, nonlinear equation 
for wave propagation. In this paper, employing Taylor's series expansion of 
free surface displacement and keeping the terms up to the third-order, we 
derive a unified nonlinear model equation for wave propagation. Validity of 
present nonlinear model is demonstrated theoretically by comparing model 
equations for different regimes of applications. Present nonlinear model is 
applied to calculate waves propagating over a submerged bar and a rectan- 
gular step in the third section. Discussions of present nonlinear wave model 
are followed. 

Mathematical Formulation 

For self-completeness of this paper, we give a brief derivation following 
Broer (1974), and Radder and Dingmans (1985). 

For water body defined between bottom, z — -h, and free surface C, 
the cannonical equations of Hamiltonian theory can be expressed as: 

6JL- <% 
S(j> ~ dt (1) 

(2) 

where <j> is the free surface velocity potential, and C is the free surface dis- 
placement. H is a functional and represents the total energy of water body. 

H = f I H0dxdy (3) 

where H0 is the energy density function and can be written as: 

#o = iK2 + 5/j(V$)2 + (g)2]^ (4) 

where the velocity potential at any point, $, is related to the velocity po- 
tential at the free surface by a distribution function in z-direction. 
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$ = f{z)<j> (5) 

with 
cosh k(z + h) . . 

/(Z)= cosh *« + *) (6) 

It is noted that /(C) = 1 and & is a characteristic value. When C is dropped 
from the equation, the distribution function reduces to the same one as 
linear cases and the characteristic value k represents wave number. 

Assuming that change rates of water depth and characteristic value 
are negligible when slope of water bottom is mild, eqs.(l) and (2) after 
integrating from the bottom to the free surface can be expressed as: 

^ =(D + EQV<t> • VC + (F + GC + HC,2)<t, + I<f>(VQ2 

-V-[(A + B<: + CC2)V4> + (D + EQW] + 0(C4) (7) 

U = - K + i(W)2(5 + 2CC) + EW • VC + \$\G + 2HQ\ 
+ V-[(.D + i7C)<?SV0 + ^2VC] + O(C4) (8) 

where 

A = k tanh kh 
B = k(k-k tanh2 kh) 

2Ar/» + sinh 2fcft 
C = 

D = 

4k cosh  kh 
cosh kh — kh sinh kh 

cosh3 kh 
-4kh + 2khcosh2kh-3smh2kh 

E= U^kh  (9) 

_ k(-2kh + sinh2kh) 

G = 

H = 

4 cosh  kh 
k3htanh kh 

cosh  kh 
k3(4kh - 2kh cosh 2kh + sinh 2kh) 

4 cosh4 kh 

The free surface, C, is related to the velocity potential, <j>, 

Combining eqs.(7) and (8), a nonlinear equation of velocity potential can 
be obtained as: 
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+ £ v • Ww) + £(f )2] v, - i[-D + f §»v<£)> + 0(O (ii) 

In shallow water, where the parameter of kh = \L is small, we expand 
the coefficients of A, B, C, D, E, F, G, H and I in eq.(9) up to the accuracy of 
0(/i3) of Taylor series. For one-dimensional cases, when normalized variables, 
e = a/h(a :amplitude),x' = kx,t' = ky/gK t,C = C/a,<t>' = k<j>/£y/gfi are introduced, 
and e and n2 are assumed in the same order of magnitude, eq.(ll) can be 
reduced to: 

<j>'t,t, + eWA'x'v + #-&,.) - &v = 0{e\ f) (12) 

This is a nonlinear equation of Boussinnesq type for waves propagating over 
shallow water depths. 

Using Stokes expansion, 

C = oi cos 0 + (d20 + <J2l) cos 28 + 03 cos 30 
(j>-b1sin8 + 62 sin 29 + 63 sin 30 + 0(a\) (13) 

where 8 = kx -uit, u is the radian frequency, we obtain the following coeffi- 
cients in terms of amplitude, ai, up to the accuracy of 0(a\): 

ka\ 
020=  2&mh2kh 

_ 8kh — Akh cosh 2kh + 12 sinh 2kh + sinh Akh    2 

°21 = 4(-2*/» + sinh 2fch) sinh 2k h 0l 

__j fc2(66coshfc/j — 3cosh3fe/i + cosh 5kh — 52kh sinh kh — 4fc/isinh3fcft)  3. 
i ——Lai + U(-2kh + sinh 2kh) sinh 2kh cosh kh °" 

,   _g k(7coshfc/t + cosh3&/j — 4fc/isinhfc/i)  2 

w 4(—2fcft + sinh 2kh) cosh fcft * 

a3 =fc2a? (932fc/i cosh Jfefc - 246fcfc cosh 3*/» - 30 cosh bkh 
+ 541 sinh kh - 264fc2/i2 sinh kh + 616 sinh 3fcft + 72k2h2 sinh 3fcft 
+ 78 sinh 5kh + 3 sinh 7kh)/[128(-2kh + sinh 2fc/i)2 sinh kh cosh2 Jfeft] (14) 

with the nonlinear dispersion relation: 

w2 

— = ktwahkh\l 
g 

Z2kh — \%khcosh2fc/i - 4fc/icosh4fc/i + Zlsinh2kh + 4sinh4fc/i + sinh6fc/i,, ,.   ..„. 
+ = * ai]   (15) 

8(-2fc/» + sinh 2fcfc) sinh 2kh2 u   v    ' 
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The quantity of o2o represents change of lower mean water level under 
nonlinear wave action and is the same as that derived by Bowen (1968) for 
wave set down. 

When kh approaches inifity for deep water depth, those coefficients 
in eqs. (14), and nonlinear dispersion relation, eq.(15) reduces to: 

fl20 = 0 
1,    2 

a2i = 2fcai 

«3 = j|*2a? (16) 

— = k(l + Pal) 

These results are identical to those in the Stokes wave theory. 

When all the nonlinear terms are dropped and monochromatic waves 
are assumed, eq.(ll) can be easily simplified to the mild-slope equation 
(Berkhoff, 1972) with linear dispersion relation of the characteristic value, 
k, denned as wave number. 

The model equation, eq.(ll), therefore unifies propagation of nonlin- 
ear waves from deep to shallow water depths which is accurate up to the 
third order of incident wave amplitude. We plausibly use eq.(ll) to simulate 
nonlinear wave propagation. 

Numerical Computations 

Due to the complexity of the model equation and difficulty of deter- 
mining the characteristic value for nonlinear waves of third order, we employ 
Stokes expansion for second order nonlinear monochromatic waves. 

< = Re{(o + Cie""'"" +C2e-2,'w,j + 0(|Ci|3) (17) 

4> = Re{$0 + fae-'"1 + fae-2^} + 0(|*i |3) (18) 

The model equations for different orders can be written as: 

(— - F)<t>i + V • (4V<4i) = 0 (19) 

iu 
Ci = -h 

9 

Co = ~\<t>1\
2(VS,1f-^1 

(        _ F)h + V • (AVfo) =- Wi • VCi + -*id - 

+ ^[-?(V^i)2-?^ + V.(^1V^)] (22) 

I2 
(21) 

V-(|ciV^i + ^iCi) 
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C2 = —$2 - f (V*0S - j-*\ + -V • (%Vh) (23) 
9 % Ag g 2 

where S is the phase function and the characteristic value, k, determined by 
the dispersion relation of 

— = k tanh kh (24) 

Wave field can be calculated by using eqs.(19), (20), (21), (22), and 
(23) for each component. The free surface displacement is obtained by 
employing eq.(17). For the case of nonlinear waves propagating over a sub- 
merged bar (Beji and Battjes, 1994), Fig. 1, incident waves with wave 
height 2cm, period Isec. propagate from left to right. The constant depth be- 
fore the bar is 0.40m and the Ursell number, (Ur = {a/h)/{kh)2), is 0.054. In the 
computational domain of 12m, 481 nodal points are used. For numerical cal- 
culations, eqs.(19) and (22) are discretized into finite difference equations. 
Radiation conditions of outgoing wave components are applied to both ends 
of the computational domain. The sloping bottom on the right hand side is 
assumed to absorb all of the wave energy. In experiments (Beji and Battjes, 
1993), gage 1 indicated incident waves. We campare the numerical solutions 
with experimental results for waves over the submerged bar (Figs. 2, 3, 4, 
5, 6 and 7). The numerical solutions are obtained by calculating amplitude 
distribution in space of each component and reconstructing the time history 
of free surface at each point. It can be observed that there is a significant 
difference between linear and nonlinear waves. The nonlinear behavior of 
waves due to change of water depth is captured by present nonlinear model 
quite nicely. However, discrepancy between numerical solutions and exper- 
imental results at wave troughs seems quite persistent. 

We further extend present nonlinear model to calculate waves over a 
step, Fig.8 (Kittitansuan et al., 1993). Although the slope at the step violate 
mild-slope assumption, waves evolve nonlinearly after the step. The depths 
before and after the step are 0.376cm and 0.113cm, respectively. Incident wave 
height is 1.63cm and period 1.85sec. The Ursell number in this case is 0.042. 
Total nodal points of 601 are used in a 12m computational domain. The step 
is simulated by a sudden change of water depth between two nodes with 
a slope of 6.575. Present numerical time histories of free surface at points 
after the step of lm and 2m are compared with experimental results, Figs.9 
and 10 (Kittitanasuan et al., 1993). Good agreement is observed except 
profiles at wave troughs. We also calculate free surface profile in space and 
compare with that of Kittitanasuan et al (1993). The step is located at the 
origin of x-axis. Waves behaves almost linearly before the step and evolve 
nonlinearly further away from the step. Present nonlinear model is in good 
agreement with theory of Kittitanasuan et al (1993). 

Discussions and Conclusions 

In this paper, we present a derivation of nonlinear model in the accu- 
racy of 0(C4) for water wave propagation. It unifies nonlinear wave models for 
different depth regimes. Present nonlinear model reduces to the mild-slope 
equation in the linear case. It is shown that present model can be simplified 
to a Boussinesq equation for shallow water and Stokes waves when water 
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depth is deep. However, due the complexity of the governing equation and 
the difficulty in determining the characteristic value of dispersion relation, 
we calculate nonlinear waves up to the second order and compare present 
numerical solutions with experimental results in two one-dimensional cases. 
Good agreement is obtained. Discrepancy between present numerical so- 
lutions and experimental results of free surface profiles at wave troughs 
remains for future study. 
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Fig. 1 Experimental set-up for waves over a submerged bar 

(Beji and Battjes, 1993) 
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+ Experimental Data 
Station 2  • Linear Theory 
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Fig. 2 Comparison of present numerical solutions with 

experimental results (Beji and Battjes, 1993), station 2 

+ Experimental Data 
Station 3  •  Linear Theory 

-r Present Theory 

Fig. 3 Comparison of present numerical solutions with 

experimental results (Beji and Battjes, 1993), station 3 
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+ Experimental Data 
Station 4  • Linear Theory 

— Present Theory 

Fig. 4 Comparison of present numerical solutions with 

experimental results (Beji and Battjes, 1993), station 4 

+ Experimental Data 
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—- Present Theory 

Fig. 5 Comparison of present numerical solutions with 

experimental results (Beji and Battjes, 1993), station 5 
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+ Experimental Data 
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Fig. 6 Comparison of present numerical solutions with 

experimental results (Beji and Battjes, 1993), station 6 
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Fig. 7 Comparison of present numerical solutions with 

experimental results (Beji and Battjes, 1993), station 7 
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Fig. 8 Experimental set-up for waves over a rectangular step 

(Kittitanasuau et al.,1993) 
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Linear Theory 
Experimental Data 
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Fig. 9 Comparison between present numerical solutions and 

experimental results (Kittatanasuan et al., 1993) 

at lm after the step 
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2.00 

•      Linear Theory 
+     Experimental Data 

Present Theory 

Fig.  10 Comparison between present numerical solutions and 

experimental results (Kittatanasuan et al., 1993) 

at 2m after the step 

•        Unear Theory 

+       Klttltanaauan's Theory 

2 o __.    Present Theory 

Fig.  11  Comparison of free surface profile in space between 

present model and Kittatanasuan et al., (1993). 


