
CHAPTER 45 

Particle Velocity Distribution in Surface Waves 

Geir Moe1 and 0ivind A. Arntsen2 

Abstract 

In offshore and ocean engineering it is often of interest to be able to model 
particle velocities in the so-called splash zone, in which during a wave cycle, a given 
point is sometimes submerged, sometimes in air. (Emergence effects.) This paper applies 
the so-called Gerstner wave theory, extends it to narrow banded irregular waves, and 
presents it in an Eulerian description to second order in wave amplitude, so that the 
results may be compared with measurements made at fixed positions in the fluid. Mean 
horizontal velocities have been determined, and shown to compare excellently to 
laboratory measurements, both for regular and irregular waves. At this point in time, it 
can not be said whether the fit will be equally good in real ocean waves. 

Introduction 

The design of structures in an ocean environment is often governed by wave 
loading, requiring the determination of water particle kinematics. However, real ocean 
waves are irregular and nonlinear, and no universally accepted theory is available for 
predictions of such flows, especially not in the splash zone. This is unfortunate, since 
rather large contributions to the total loading may originate in the splash zone. The most 
important statistical properties of particle kinematics at fully submerged points for mildly 
nonlinear, irregular waves have been successfully determined by Longuet-Higgins 
(1963). The term "particle kinematics" is here used to denote particle velocities as well as 
accelerations. When emergence effects in the splash zone are to be included, most of the 
available models are of an approximate, "engineering" type, such as Wheeler stretching 
or similar, e.g. the models associated with the names of  Chakrabarti, Gudmestad or 
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Heideman, see e.g. Skjelbreia et al. (1991) for full references. A different type of 
approach was introduced by Tung (1975). He used Airy wave theory, but modified the 
results by checking whether a splash zone point at a given instant was submerged, or in 
air, by comparing the vertical coordinate to the instantaneous location of the wave 
profile, again predicted by Airy theory. Technically this was done by multiplication with a 
step function, constructed such that the flow velocity became zero when the considered 
point was in air. Cieslikiewicz & Gudmestad (1993) used a similar approach in 
conjunction with the previously mentioned higher order wave approach of Longuet- 
Higgins. However, their results compared only moderately well to Laser Doppler 
measurements of particle velocities made by Skjelbreia et al. (1989). 

In the present paper an alternative theory will be explored, which gives quite 
good predictions of the mean of the measured horizontal particle velocity. Good 
agreement were found for several cases tested, in irregular as well as regular waves. The 
idea underlying this model is quite simple: it is assumed that the particle paths are circles 

which are traversed at constant velocity. This assumption leads to a deep water wave 
theory commonly denoted as the Gerstner wave, which will be presented in the next 
section. A word of caution may be appropriate at this point: The comparison is made 
between a Gerstner wave and experimental results from a closed wave tank in which 
waves were generated into quiescent water. The measurements cover only the initial 
phases after the wave generator had been turned on, the flow field will change if the 
wave generator is left on for a long time, see Mei (1972). Real ocean waves may have 
different characteristics from this, since there the waves have been generated in a 
different manner, viz. over vast areas and during long times, and by different mechanisms 
of generation. Even so, it is suggested that studies of waves under carefully controlled 
conditions in test basins may shed considerable light on the general wave kinematics 
problem. 

Basic Equations 

The derivation of Airy wave theory is well known and will not be repeated here. 
It is normally developed in an Eulerian frame of reference, the key point being that the 
boundary condition at the free surface is applied at the still water level, and that quadratic 
velocity terms are dropped from the surface boundary condition. Its justification rests on 
a number of assumptions, notably that the wave amplitude is vanishingly small compared 
to the wavelength. However in engineering practice linear theory is routinely applied to 
situations where the amplitude typically is 0.01 to 0.05 of the wavelength, and experience 
indicates that acceptable accuracy will usually be obtained for most of the physical 
quantities involved, provided the observation point stays submerged at all times. One 
major advantage to the Airy theory is that it is linear, and that therefore the principle of 
superposition applies. The Gerstner wave is also linear, (Kinsman, 1965). It satisfies 
continuity and the surface conditions exactly, but the flow is rotational The Gerstner 
wave will now be described in the usual coordinate system with the^-axis in the direction 
of wave propagation and z vertically upwards, and the origin at the still water level. 
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Assuming deep water waves of wave period T = 2n/co and wave length X = 2n/k, the 
location of the particle x{xo, zo, t), z(xo, zo, t) at time t is given by: 

x = x0 - aekh cos(Q)f - kx0), 

z = z0 + aekz° sin(GM - kx0). 

(1) 

(2) 

This is in fact a Lagrangian description of particle motions. It easily seen that for 
fixed values of xo, Zo, and varying t, the coordinates (x, z) describe a circle about the 
point (xo, zo), whose radius is a at the surface (i.e. at zo = 0), and decays exponentially 
with the distance below the surface. The shape of the free surface r\(x,t) follows by 
setting zo = 0: 

r\(x, t) = a sin((or - kx0 (x,t)) (3) 

When t is kept constant, the equation defines the surface profile, as a function of x. This 
represents a trochoid3 as depicted in Fig. 1 for fixed time t = 0. 

trochoid 
(Gerstner) 

Figure 1. Free surface variation of a Gerstner wave. 
Data as for wave case R15b. (Skjelbreia et al., 1989) 

H = 0.13 m, T= 1.5 s, X = 3.5 m, d = 1.3 m. 

The phase velocity c - )JT is as for the Airy wave, and a close inspection of the free 
surface condition would reveal that it will be satisfied exactly, provided the deep water 
dispersion relation is satisfied, see e.g. Kinsman (1965) or Lamb (1932): 

c = (0/ k 

k = (H2/g 

(3B) 

(3C) 

It is now necessary to convert to a description in terms of fixed coordinates 
(x, z), in order to describe the particle velocities at a given point, i.e. an Eulerian 
description is required. Without loss of generality one may consider the point (x = 0, z). 

trochoid: the curve generated by a point somewhere on the radius line (centre distance a) 
of a circle (radius r = Xlln) as the circle circumference rolls on a fixed straight line. 
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This is convenient because then (kxo) represents a small parameter, of order (ka), so that 
a low order Taylor expansion may be used for functions of (kxo). In the final expressions 
the equations will be expanded to second order in (ka). From (1) with x = 0 initially to 
first order one has 

rW •• aekz cos(OM) (4) 

^ = z-Zo • aekz sin cor. (5) 

The second order expression for xo may be found by substitution of the above first order 
approx. into (1), 

x0 =aexp(fe-fc£(1))cos(GW-fa41)) 

= aekl (1 - &C(1) )(cos Cflf + kxf sin cor) 

= aetecoscof. 

Similarly for z one has 

= aekz (1 - kC,m )(sin cof - fcc^ cos cof) 

= aekz sin cof -ka2e2kz 

(6) 

(7) 

Thus for a point at the surface zo = 0, and z(0,0, t) represents the surface elevation r|(0, 
t) as shown in Fig. 2. At a crest z = a and sincof = 1 and from (7) follows that C = a, 

while at a trough C, = -a, both accurate to second order in a. Zero crossing occurs at 

sinciM = ka, Le. at cor = ka or cof = n-ka. Thus the crests are sharper and the 
troughs more rounded than for a pure sine wave. This was to be expected, since the 
formulae represents the trochoid. 

• a sin( co t) 

-2 -1 / 0 I 1 

fr\ka e° 7C-6n 
n-ka 

Figure 2. The surface variation of the trochoid correct to second order in ka. 
Data as in Fig. 1. 
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In the same manner one may find the horizontal and vertical velocity components at 
(x - 0, z) as 

u = aa>ehz" sin(w - kx0) = acaekz sin at - a2k(Oe2kz, (8) 

w = a(Hekz cos cat. (9) 

Mean particle velocity, regular waves 

The above are expressions for regular deep water (Gerstner) waves of amplitude 
a and period T = 2rt/co and wave length X = 2nlk. The particles moves in closed circles, 
hence the mean velocity when following a particle is zero. (Laplacian description). For a 
stationary observer (Eulerian description) the picture is different, however, and that is the 
relevant viewpoint when comparing to measurements taken at a fixed point. From (9) is 
seen that the vertical mean velocity is zero, 

w = 0. (10) 

For points that are always submerged, the mean horizontal velocity can similarly be 
determined from (8) 

u=-a2(bke2kz. (11) 

For points in the splash zone, -a < z < a, emergence effects must be considered. The 
considered point will be in air for zo > 0 or, using zo = z - C ^d (V), the point will be in 
water, provided 

z0 = z + ka(l + 2kz)- a(l + kz) sin tot <0. (12) 

Solving and retaining terms to second order in amplitude a in the numerator and 
denumerator, (and remembering that in the splash zone z is of order a,) one obtains 

=>   sin ot > sin 0O = . (13) 
a(l + ka) 

Thus the limiting phase angle is (co?)0 = 0O (cf. Fig. 2), and the mean value of horizontal 
particle velocity in the splash zone becomes 

K(0,Z) = - \u(0,z,t(d))dd 
K J 

aca 
[e* cosQ 0-ake2kl:(--60)]. 

7C 2 
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The considered contribution represents the value of the integral in the phase angle range 
(-n/2 < 6 < nil), which in view of symmetry yields the average over a full cycle. The 
result is shown in Fig. 3, which also includes the experimental points from a project 
conducted at SINTEF NHL, Trondheim, under the supervision of Dr. Skjelbreia 
(Skjelbreia et aL, 1989). The experimental data points have been read off from a figure 
presented in Cieslikiewicz & Gudmestad (1992). 

-0.10 -0.06 0.00        .    0.05 0.10 0.15 
U-mean [m/s] 

Figure 3. E[w] vs depth. Regular wave case. 

Irregular waves 

Typically the variance spectrum, 5n(co), of the sea surface is known. Let us for 
simplicity assume that the particle kinematics represent ergodic and narrow band 
processes, and further that h, u and w are Gaussian, so that their peaks are Rayleigh 
distributed. The choice of a frequency, that can be considered to be the most 
representative for the narrow process u(x, z, t), is not straight forward. In the splash zone 
one might think that the zero crossing frequency of u (which is C042) would be the best 
choice, however the surface shape is dictated by the zero crossing frequency of rj (oo20), 
and this would also govern the frequency of the horizontal particle velocity. The shape of 
the variance spectrum of the horizontal particle velocity will change with depth,since the 
wave components of higher frequencies attenuate more rapidly with depth, than those of 
the lower frequencies. The frequency of the depth averaged horizontal particle velocity 
turns out to be C020 which therefore is chosen as the representative frequency for the 
narrow band process used herein. 

co20=(M2/M0)
L (15) 
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C042=(M4/M2)
1/2, (16) 

Mj  = \aiSn(()i)d(ii . (17) 
o 

The expected value of u in an irregular seastate depends on the wave amplitude, which is 
a slowly varying envelope for t], and is as such Rayleigh distributed with parameter an, 

viz. 

/»=4-«p(-;rr);fl*o, (W 

in which fA (a) is the probability density of a. Then the expectation of u is given by 

EM = ffA (a)E[u\ a]da. (19) 

Equation (19) states that for a given amplitude, the result depends on the expectations of 
u, summed over all amplitudes, and weighting according to their frequency of 
occurrence. The ergodicity theorem implies that the calculation of (19) may be done as a 
time average. Since the wave spectrum is narrow-banded, the components in (19) 
represent almost harmonic waves occurring sequentially rather than superposition of 
components that occur simultaneously. Hence the decision whether the point is in air can 
be made on a wave by wave basis for each value of the amplitude. Then the expectations 
in (11) and (14) represent E[u\a] for points that are submerged or in the splash zone 
respectively. For a given depth, z, the decision whether the point is submerged or not 
depends on the amplitude a. Hence (19) must be split in two integrals, one for (-z)>a 
which can be evaluated analytically, and another in which the lower integration limit must 
first be determined according to (13), and the integral in (19) then must be evaluated 
numerically. The results are shown in Fig. 4 together with points representing the results 
of the measurements made by Skjelbreia and his team. The experimental values have 
been read off from a figure, this time the figure is taken from Cieslikiewicz & Gudmestad 
(1993). It is seen that the fit between experiments and theory is very good. 

Discussion 

The Gerstner theory used herein shows results that correspond very well to the 
Skjelbreia experiments. In contrast, application of linear (Airy) wave theory resulted in 
considerable discrepancies between experiments and theory. In the results presented in 
the two papers by Cieslikiewicz and Gudmestad, the discrepancy relative to maximum of 
the mean velocity as calculated from the measurements, amounted to about 25% through 
much of the splash zone and up to 40% in the zone of total submergence. This was the 
case both for the regular and the irregular wave case. The regular wave case R15b was 
also   modeled   using   an  eighteen  Fourier  component  method   (ACES 107).   As 
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recommended in the guide the integrated Stokes flow in a wave flume should be equal to 
zero and set accordingly in the Fourier-series model.. The results are presented in Fig. 3. 
We see that this model fit the observations much less than the Gerstner approach. 

It must be emphasized very strongly that the case considered herein is laboratory 
measurements, and hence different from real ocean waves in many ways. The Airy wave 
can be made equal to the Gerstner wave, provided a so-called Stokes drift is added. 
Stokes drift is a steady current that decays exponentially with depth, and is in fact equal 
and opposite to the current determined herein for the totally submerged case, as given by 
(11). Integrated over the whole depth this yields a total flow of water in the direction of 
wave propagation and per unit width of the wave crest, equal to coa2. Under the 
conditions at which the experiments were conducted, such a flux can not take place, 
since it violates continuity both at the wavemaker and at the wave front. This can hardly 
be remedied by superposition of another irrotational flow. Therefore it may not be too 
surprising that the Gerstner wave is in better agreement with measurements, even though 
it has the unusual character of being rotational. Another rotational solution to this 
problem has been presented by Kyozuka (1995). One possibility is that the required 
rotation is generated from shear along the boundaries of the fluid region. It is not known 
how well the two theories discussed herein will compare to measurements in real ocean 
waves. 

1  !  '  !  ' 1  !      !      !      ! 

\     \ - 

 i •    —,—•—^~     \ 
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WaveCaselU (d=1.3m) 

JONSWAP spectrum 
Y=3.0,Hs=0.21m,Tp=1.8s 

*. Data from (Skjelbreia & al.). - * 

,1,1, ,1,1,1,1, 
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Figure 4. E[«] vs depth. Irregular wave case. 
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Conclusions 

• The Gerstner wave has been presented in an Eulerian description, to second order in 
the wave amplitude. 

• Mean particle velocities have been computed for the regular and irregular case. 
• The results have been compared to laboratory measurements, exhibiting an excellent 

fit, see Fig. 3 and Fig. 4. 
• No statements can at this time be made on how the predictions from the present 

theory would compare to measurements in the ocean. 
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