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A Turbulent Flow Model For Breaking Waves 
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Abstract 

This paper presents the formulation and solution of a numerical model for 
breaking waves on uniform sloping bottoms. The model is based on the two- 
dimensional vertical (2DV) Reynolds-averaged Navier-Stokes equations. The 
effect of breaker-generated turbulence is modeled by the Reynolds stress terms in 
the momentum equations, together with an eddy viscosity model. A transformation 
technique is utilized to solve numerically the governing equations in a variable grid 
system. At each time level of computation, it is possible to determine directly the 
following wave quantities for the surf zone: water surface elevation, pressure field 
and velocity field. The numerical results are verified with various cases of 
laboratory data. 

1. Introduction 

The breaking of waves results in the transformation of irrotational wave motion 
into turbulent rotational motion, which is characterized by vortex motion of 
various scales; and due to this turbulent motion, the wave energy transported from 
the offshore is dissipated throughout the surf zone. It has been known that 
turbulence generated by breaking waves has important effects on most processes 
within the surf zone such as wave transformation, diffusion of materials, etc. 
Therefore, in order to obtain a realistic and reasonable simulation of surf zone 
processes, it is necessary to include the effect of turbulence in the formulation of 
the wave equations. In addition, information on the vertical structure of wave 
variables such as wave pressure and water particle velocities is necessary to solve 
important problems of the nearshore area. For instance, the vertical profile of wave 
pressure can be applied to determine acting force used in the design of coastal 
structures, or the near-bottom velocity can be used as a boundary condition to 
determine the bed shear stress and to solve the flow inside the bottom boundary 
layer which, in turn, play an important role in the prediction of beach profile 
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change due to sediment transport. An useful and effective wave model, therefore, 
must be capable of computing directly the vertical distribution of wave variables. 

Recently, rapid development in the memory capacity and computational speed 
of personal computers makes it possible to solve the full 2DV Navier-Stokes 
equations for water waves. The solution of 2DV wave models may be one among 
preliminary steps to achieve a complete picture of the modeling of coastal 
hydrodynamics in a near future, when water waves can be simulated by solving the 
full three-dimensional Navier-Stokes equations. 

Petit et al. (1994) computed breaking waves on a submerged bar by applying 
the Volume of Fluid method to solve the 2DV Navier-Stokes equations. 
Shibayama and Duy (1994) presented a 2DV model for waves propagating on 
sloping bottoms and verified it with laboratory data of non-breaking and breaking 
waves, however, they could not attain reasonable numerical results for the velocity 
field in the siirf zone. 

This paper presents a hydrodynamic model for breaking waves on uniform 
sloping bottoms, in which the effect of breaker-generated turbulence and the depth 
variation of the wave variables are included in the model. 

2. Governing Equations 

Figure 1: Definition sketch of coordinates system 

For   a   free   surface   domain,   the   2DV   Reynolds-averaged  Navier-Stokes 
equations are written as 

du    dw 
+ 0 
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where (w,w): Reynolds-averaged velocity vector; P; Reynolds-averaged pressure; 
£: water surface elevation; zh: sea bottom elevation; g; gravity acceleration. The 
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momentum transports due to fluctuating velocity components of turbulent motion 
(Reynolds stress terms), Mx and Mz, can be expressed as follows, by using eddy 
viscosity model 

d(    du\    d\    (du    dw* 

d \    ( du   d*>S\      d (    dw^ 

(5) 

"• = *W* + *JJ+2*r'*J (6) 

where vT is the eddy viscosity. In the above equations, since v « vT, the diffusive 
terms due to molecular viscosity v are neglected. 

In the surf zone, the mean value (time-averaged over one wave period) of vT, 
vT, has been previously determined by fitting computed currents velocities to 
measured data. For instance, Longuet-Higgins (1970) simulated longshore currents 
by using 

vT«0.Q\hy[ghls (7) 
where h is the mean water depth and s the beach slope. 

On the other hand, in the modeling of cross-shore currents, Okayasu et al. 
(1988) applied a mean eddy viscosity in the form 

vT=03jg(dt+H)sz' (8) 
in which dt is the depth to wave trough, H the wave height and z' the vertical 
distance from the bottom, while Svendsen and Hansen (1988) suggested that 

vT = (0.007 - 0.03)hjgh (9) 
Based on Eq. (9) and the Prandtl-Kolmogorov assumption, Shibayama and 

Duy (1994) derived approximately a time-varying eddy viscosity for the area 
outside the bottom boundary layer of the surf zone as follows 

VT=frJ&  {£-*>) (10) 
In Eq. (10), fv is a constant and was found to have an average value of 0.125 from 
the computations of breaking waves. Shibayama and Duy (1994) showed that the 
use of a fixed value of/,, for all computational cases can produce good agreements 
between computed and measured wave heights in the surf zone, however, 
simulated wave profiles and velocity field generally exhibit certain discrepancies 
compared to measured data, in particular for the near-breaking area. These 
discrepancies may be caused by the fact that the eddy viscosity commonly increases 
within certain distance from the breaking point, as shown by laboratory 
measurements of Okayasu et al. (1988). In order to take into account this effect in 
the simulation, the constant /„ is slightly modified to become 

10.03 ehlh    ifht/fKlS 
^=|o.03e15      if h./hy 1.5 (11) 

where h is the still water depth, and 1\ the breaking water depth. Eq. (11) 
expresses a variation range of fv from a minimum value of 0.082 at the breaking 
point (]% I h = 1) to a maximum value of 0.134. 
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Boundary Conditions: 

•    Water surface boundary [z = Q]\ 

The water surface is a moving boundary in the model. The position of this 
boundary must be determined at each time level with its own boundary conditions 

as follows. 
For u, a zero shear stress condition is assumed at the water surface 

du 

For w, the kinematic boundary condition at a free surface is applied: 

w=-—+u—- 
ot       at 

(12) 

(13) 

(14) 
and the boundary condition for P is 

P = 0 

•    Bottom Boundary [z = zbj: 

A non-slip condition is applied for w: 
w = 0 (15) 

In the numerical mesh, the first grid point of?/ is not located at the bottom (Fig. 
2) and therefore, a direct use of the non-slip condition is not necessary. Instead, the 
boundary condition of ti is given implicitly in the form 

'Wi+".,0.5.2 =° (16) 

• P points 
o u points 

x w points 

bottom boundary 

- fictious node 

i-1 

._L_«__I. 

i+1 

Figure 2: Bottom boundary 

Using the continuity equation, Eq. (1), and the non-slip condition, a Neumann 
boundary condition for pressure is obtained from the z-momentum equation, Eq. 

(3): 
8P_ 

dz 

d2w~\ 
4-g+2vr^rj (17) 

•    Seaward Boundary (x = 0) 

The boundary conditions for £, w, w and P of incident wave are obtained by 
applying cnoidal wave theory or Stokes wave theory, depending on the calculated 
Ursell parameter, Ur, at the seaward boundary (Nishimura et al., 1977): 
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HI?     [> 25   : cnoidal waves 
u/-=—T~   1    *c        o   , (18) /j^       [<25    :   btokes waves 

The reflected wave from the domain inside, if existing, will be treated to pass 
freely and undisturbed through the open seaward boundary. In the model, the 
actual water surface at each time level t is computed as the sum of the incident and 
reflected waves. 

After determining the water surface elevation C, (t), the other variables at the 
seaward boundary (u, w, P) can be determined approximately by using cnoidal or 
Stokes wave theory depending on the value of Ursell parameter. 

• Shoreline Boundary [x = xmax) 
For u, an absorbing boundary condition is applied at the shoreline boundary 

(Zienkiewicz and Taylor, 1991): 
du      du 
-+c- = 0 (19) 

where c is the wave celerity at the shoreline boundary. For outflow at the shoreline 
boundary, typical boundary condition for w is (Fletcher, 1991) 

dw 
- = 0 (20) 

Assuming that the effect of viscosity in the region adjacent to the shoreline is 
negligible, a Neumann boundary condition for pressure P can be derived by using 
the x-momentum equation, Eq. (2), and the absorbing condition, Eq. (19). The 
resultant equation is 

cP        T, .du    d(uw)\ 

• Breaking Location [x - xh) 
The breaking point is determined by Goda's breaking indices (1975): 

-^=4l-exj-1.5^-(l + 15s4/3) 
where Hb: breaking wave height; L0: deep water wave length; s: beach slope; and 
A is an empirical constant taken to be 0.17. 

3. Numerical Formulation 

In the physical domain, the upper surface is a moving boundary due to wave 
motion, and the sea bottom also changes in space, 

C = CM (23) 
zb = zb(x) (24) 

(22) 
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Figure 3: Physical and computational domain 

The generated grid for numerical computation is thus also a moving system in 
space and time (Fig. 3). It is difficult to solve the governing equations numerically 
in this moving and curvilinear grid. Therefore, a coordinate transformation is 
carried out to map the moving grid to a fixed and linear one, in which the 
boundaries are parallel to the coordinate-axes (Fig. 3). The relationships between 
the physical domain (x, z, /) and the computational domain (£,77,7) are expressed 
as follows 

x = % (25) 

z=h + Al')(( ~h) (26) 
/ = r (27) 

where 77* = 77 / rjm and i]m is the maximum value of 77. 

Depending on the form of the function f{if), different types of numerical 
mesh can be generated for the physical domain (Fletcher, 1991). To obtain 
constant vertical mesh intervals in the physical domain, we choose 

f{v') = l' (28) 
The first deriatives of the velocity components, u and w, with respect to x, z, 

and / are expressed in terms of the new variab 

di du du 

dx  dz  dl 
dw dw dw 

— 

dx  dz  dl - 

dv dv dw 

,d% di] dx. 

(29) 

du_d"_ch_       & & 
% &i dx     &n_ &n_ 

dx dz 
dx dx 

.dx dz     dl 
where the Jacobian matrix J of the transformation is determined by using Eqs. (25) 
through (27) 

es£, 77, r as follows: 

a 
di] 

~a 
dx 
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J 

% % df 
dx dz a 
dt] dt] dt] 

dx dz a 
dr 3T dx 
dx dz a J 

nmhx + vUx-zJ] 

0 
C- 

<r, 
i 

(30) 

where C,x and zbx denote the derivatives of C, and zb with respect to x, respectively. 
With the obtained Jacobian matrix J, at each time level the variable physical 

domain (x, z, t) can be transformed to the fixed computational domain {t,,t],x). 
The governing equations, Eqs. (1) through (4), in the computational domain are 
then given as: 

ai du        dw 

ai        at    d(u2) 

dx+TJ'dt^+' % 
+nx 

d{u2) 
dt] 

+nx drj + 1. dr] 

•+r/z 

d{uw) 

dr] 

dw        dw    d(uw) 

dr + V. 
d{uw)        d{\ 

dt] 

dC . «?J 
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a   dx' 
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udz - 0 

-g- 
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(31) 

(32) 

(33) 

(34) 

where 

M, = 2 
dvT 

+ V, 
dvT]du 

-d^kV^ 

+2v, 
dhi d2u 

+ vx dt]' 
• + 2r]x 

du 

dr] 

d2u 
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Mf 
dvT        dvT Ydw        dw 
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% dt] kd$     lx dr] 

dvT du 
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+ 2rj; 
dvT dw 

dt] 

d2w 

(35) 

+ VT 
dt] dt] dt] 

+v, 
d2 w 

•+v: 
,d2w d2* "w     dw 

d^dt]    drj - + 271x^- + ^~ +n, dt] 
(36) 

d!;2     ,x dt]2 

The boundary conditions are also transformed to the computational domain in 
the similar way. The transformed equations and corresponding boundary 
conditions can be solved numerically by the finite difference method. The numerical 
computation is carried out on a staggered grid. In this staggered grid, P is defined 
at the centre of each cell and u, w are defined at the cell faces. In discretizing Eqs. 
(31), (32), (33), (34), finite difference expressions centered at grid point (/', j), 
(i+0.5,j), (i,j+0.5), and (i,j) are used, respectively. These allow all derivatives 
can be discretised in second-order accuracy with smallest number of involved grid 
points. The use of the staggered grid also permits coupling of the u, w and P 
solutions at adjacent grid points. This in turn prevents the appearance of oscillatory 
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solutions, particularly for P, that can occur if centred differences are used to 
discretise all derivatives on a non-staggered grid. 

A semi-implicit scheme is utilized to solve numerically the discretized forms of 
Eqs. (31) through (34). At each time step, a main set of linear equations for 
pressure is solved for the total number of grid points and subordinate sets of linear 
equations for velocities are solved along the boundaries. The result of pressure 
distribution is then used to compute the velocity field. For the water surface, two 
computational steps are necessary to determine this moving boundary at each time 
step as follows. 
(i) At the beginning of a time step n+1, an approximate solution for the water 
surface is obtained by applying an explicit finite difference scheme for Eq. (31), 
using velocity profiles at the previous time step n. The water surface obtained is 
then used to evaluate the elements of the Jacobian matrix, and therefore the 
transformed equations (31) through (34) can be solved in the computational 
domain. 
(ii) At the end of the time step n+1, after finishing the velocity computation, an 
improvement on the water surface computation is achieved by applying the Crank- 
Nicolson scheme for Eq. (31), using velocity profiles at both time steps n and n+1. 

4. Numerical results 

The total computational time required for the model to get the final results 
depends mainly on the number of grid points used in the mesh. Using a 
HP9000/720, it takes approximately 1 hour to complete one simulation for a mesh 
of 2000 grid points. 

A typical illustration of the convergence and stability characteristic of the 
present model is presented in Fig. 4, which are the computed wave profiles at 
different sections in the surf zone. With the still water level (horizontal line) is set 
as the initial condition of the computation, it can be seen that after only about two 
waves coming from the offshore boundary, the computed wave profile at each 
section already converts to its final solution. This behavior indicates a rapid 
convergence characteristic of the model. After the convergence point, the stability 
of the solution can also be seen through the periodical results of the computed 
wave profiles. 

A typical example of the numerical results of the hydrodynamic model are 
shown in Figs. 5 and 6. The model results are verified with the laboratory data 
obtained by Okayasu et al. (1988). In the figures, the variable X denotes horizontal 
distance from the shoreline of the still water, subscript "b" denotes the breaking 
point, and z' is the vertical elevation from the bottom. 

Fig. 5 shows that the time history of water surface elevation follows an 
asymetric pattern: the rise of water surface occurs much faster than the fall one. In 
general, the model is capable of simulating the highly nonlinear and asymmetric 
characteristics of wave profiles in the surf zone, as shown through the comparisons 
with measured data. However, as a common result, large discrepancies between 
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the computed and measured wave profiles are observed at sections close to the 
shoreline. These discrepancies may have been caused by the effect of the shoreline 
boundary. The  verifications also show that the present model is capable   of 
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Figure 4: Convergence and stability characteristics of the present model, illustrated 
through the time series of equi-phase mean water surface elevation (.//„ = %5cm , 
T=2s, \ = 40cm, s=I/20). 
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Figure 5: Time histories of water surface elevation ^, horizontal velocity u and 
vertical velocity w at different sections and elevations in the surf zone (H0 = 8.5cm 
, T=2s, h0 = 40cm, s=l/20). 

simulating the deformation of the velocity profiles as the wave propagates 
shoreward and of producing the high nonlinearity and asymmetry of the velocity 
profiles in shallow water area (Fig. 5). Generally, reasonable agreements, both in 
magnitude and phase, are obtained between the computed velocities and the 
laboratory data. In the vicinity of the breaking point, however, the vertical velocity 
is somewhat underestimated by the model. And at sections close to the shoreline, 
the model overestimates the peak value of the horizontal velocity. The simulation 
results also show that, in the surf zone, the vertical velocity magnitude at most 
elevations is considerable compared to the horizontal velocity magnitude and 
therefore cannot be neglected in the computation as is done in most existing wave 
models. 
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The equi-phase mean velocity vectors in the measured area of the surf zone are 
plotted in Fig. 6, for different phases in one wave period. A fairly good agreement 
in the direction and the magnitude between the computed and measured velocity 
vectors can be observed, but there exist small discrepancies in the near-bottom 
area. In bottom area, the simulated velocity vectors exhibit smaller values than the 
measured ones. Small discrepancies between the computed and measured velocity 
vectors can also be seen in the vicinity of the shoreline. This may be due to the fact 
that the real shoreline boundary has not yet been simulated perfectly in the model 
and may cause certain effects on the computed velocity field. 

5. Conclusions 

• In the present model, the hydrodynamics of breaking waves in the surf zone 
was investigated based on the governing equations of turbulent flow: the 
Reynolds-averaged Navier-Stokes equations. The effect of breaker-generated 
turbulence was included in the model and the vertical distribution of wave 
variables (P, u, w) can be computed directly by the model. The numerical 
results agree reasonably well with laboratory data of 2DV velocity field and 
water surface elevation in the surf zone. 

• A time-dependent eddy viscosity was introduced in the present study to solve 
the 2DV Reynolds-averaged Navier-Stokes equations. The derived eddy 
viscosity has been verified to be applicable in the modeling of breaking waves. 
However, this is only one of the possible alternatives in determining the eddy 
viscosity. The present model may be tested with other solutions of the eddy 
viscosity in order to seek for possible improvements of the simulation results. 

• In the model, it is possible to determine only the vertical distribution of 
horizontal velocity from the water surface to the first grid point above the 
bottom. The horizontal velocity profile below this grid point, which is affected 
by the bottom boundary layer (BBL), has not yet been computed by the model. 
The inclusion of the effect of the BBL requires a very fine mesh interval, whose 
order is about O.lmm, in order to model the large velocity gradient in the near- 
bottom area. However, at present, a 2DV hydrodynamic simulation of the 
entire surf zone, in which the BBL is included, is still not economical in sense 
of the CPU time required. 

• Disagreements between the numerical results and the laboratory data 
commonly occur in the area close to the shoreline. As already mentioned, these 
poor agreements may have been caused by the effect of the shoreline boundary. 
Due to certain technical problems encountered in the formulation of a 2DV 
model, some assumptions have been made to simplify the implementation of the 
shoreline boundary conditions such as the absorbing condition for u, the 
uniform condition for w. These assumptions may not reflect properly the 
realistic phenomena at the shoreline boundary. Therefore, a more reasonable 
implementation of the shoreline boundary conditions is necessary to obtain 
better simulation results in the area close to the shoreline. 
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Figure 6:  Comparison of equi-phase mean velocity vectors in the surf zone 
(H0 = 9$7cm , T= 1.17s, l\ = 40cm, s=l/20). 
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