
CHAPTER 6 

TIME-AVERAGED WAVE FIELD EVOLUTION IN COASTAL ZONE 
Jianlu Xu1 and Rodney J. Sobey2 

1. Introduction 
Flow circulation and the field variation of wave height and setup are important 

data in coastal engineering practice. This paper presents a wave-averaged model for 
simulating wave transformation and associated mean flow circulation in coastal 
regions. It is intended for applications where interest centers on the evolution of 
wave-averaged parameters such as wave height, setup and wave-induced current, and 
where the resolution of wave phase is unnecessary. 

2. Governing Equations 
An analysis technique used in turbulent shear flow is adapted to develop the 

governing equations for wave height, wave setup and mean flow. Variables are 
decomposed into a slowly varying mean flow and a fluctuating residual which 
includes both wave and turbulent components. For example, a general velocity vector 
is decomposed into a wave-averaged velocity vector (u,v,w) and a fluctuating 
velocity vector (u, v, w ). 

Subsequently the conservation equations of mass, momentum and energy are 
averaged over a wave period and integrated over water depth. The time-averaging 
introduces apparent stress- or Reynolds stress-style terms corresponding to the time 
scale of the wave period. The wave-averaged and depth-integrated continuity 
equation reads (Sobey & Thieke 1988). 

where x, y and z denote the Cartesian coordinates with z directed upward, t denotes 
the time, T] is the local wave setup, rjc is the local wave crest elevation, and h is the 
local water depth from a datum plane in the global SWL. Equation (1) is identical to 
the long wave continuity equation. 

The depth-integrated and wave-averaged x- and y-momentum equations are 
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where Sxx, Sxy, Syy are wave apparent stresses, and tbx and -% are the bottom shear 
stress components in the x and y direction, respectively. The wave energy equation is 
written as 

^-J[T(u3 + v3 + w^)dz + g^] + |-nM + I(^+^5 + ^)]dz 
2 at j,                       OK .h    p      2 

-— 1 (^- + i ^)dz = -— J -(u' + ^ + w2^-— I u2dz (4) 
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where Dbf and D,* are energy dissipation due to bottom friction and wave breaking, 
respectively. 

3. Closure Solution Surfaces 
Equations (l)-(4) contain wave setup, mean flow velocity and wave apparent 

stresses, among other unknowns. The number of the unknowns far exceeds the number of 
governing equations. This is the apparent stress closure problem familiar in turbulence. 
As our closure hypothesis, the Reynolds stress-style terms are established as a function 
of wave height, wave period and water depth from Fourier approximation wave 
theory. For simplicity, the closure variables are defined in the propagation direction of 
plane waves. In addition, a two-layer flow structure is assumed with the kinematics 
above wave trough(surface layer) being dominated by wave motion and the mean 
flow current being confined below the wave trough(bottom layer). The closure 
parameters for the local layer-averaged wave apparent stresses are, e.g., defined as 

I 1c —   — 
Ss = — J [-Ap + p(w2 - u2)]dz     for the surface layer (5) 

1    %   — — 
Sb = 1 p(w2 - u2)dz     for the bottom layer (6) 

h-TW-h 
where r^ is the local wave trough elevation, and Ap is the local pressure residual due to 
the partial submergence of a point above the wave trough during a wave period. Sixteen 

closure variables^*, u,, U•, U5
2, Ub, Ss, Sb,Ns, Nb, Ws, Wb, if, Fs, Fb, K, 

and Ep) are similarly established and these closure variables are normalized by angular 
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wave frequency co and the acceleration due to gravity, g. For example, & and Sb are 
normalized by p-co2/g2. Following the above procedure, closure solution surfaces are 
established with water depth ranging from deep to shallow and wave height upto the 
breaking limit. 

Upon substituting the closure parameters into Equations (1) to (4), a closed 
system for the wave height, H, wave setup, ~rj, and mean flow velocity, Ub and Vb, is 
developed. The integral, dimensionless continuity equation reads 

? + i[(Hu»COS(l>) + (h+:n + Tltr)Ub] + |-[(HUssin(t) + (h + ^ + Titr)Vb] = 0    (7) 
ot    ox oy 

The integral x- and y-momentum equations are 

|-[HUscos<|) + (h + n + Titr)Ub] + ^-[HU2cos2<t) + (h + :n + Tltr)Ug + (h+^] 
at , ox. £ 

+A[Hu2^ + (h + ^ + Titr)UbVb]=_;n5 + l:[H(SS 
+ sin2<t'N») (8) 

oy 2 ox    ox 
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where H is the wave height, <|> is the direction of wave propagation from the x-axis, fw is 
the bottom friction factor and f»bis a dimensionless factor for predicting energy dissipation 
rate due to wave breaking. 

4. Simulation of Mean Wave Parameters in One Spatial Dimension 
In a one-dimensional space with x denoting the direction of wave propagation, the 

integral continuity equation reads 

5I+^-[HUs + (h + ^ + 11JUb]=0 (11) 
ot    ox 

The dimensionless integral momentum equation becomes 
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|-[HUs + (h + Ti + rltr)Ub] + |:[HU? + (h+T1 + Tltr)U
2
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at _ OK 
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and the dimensionless integral wave energy equation becomes 
1    a   r\   

--[Ep + H Ws + (h + r\ + Tifr) Wb] +^r[H Fs + (h + r) + T^) Fb] 
Z Ot OK 

= ~(KSH) - HNs^ - [(Nb + %(h + ^ + iv)]^ (13) 
OK OK 2   OK 

-^[Wb^ + ^ + ^J-^-fwU^-f^QH2 

2 ox 371 

4.1 Characteristic Equations and Numerical Solution 
The integral equations (11)-(13) can be written into a quasilinear system 

§ + A.§   =    S(x,t,q) (H) 
at ox 

where q is a dependent variable vector, 

q = [H,^Ub]
T (15) 

S is a source or sink vector, and A is a 3x3 Jacobian coefficient matrix. The 
propagation of the information described by Equation (14) can be characterized using 
the eigenvalues of the coefficient matrix, A. The eigenvalue of a matrix is defined as 

det[M-A] = 0 (16) 

where det denotes the determinant, X is the eigenvalue, and I is a 3x3 unit matrix. 
Equation (16) is generally a third order polynomial in X. If all three roots of the 
polynomial, Xi, X2 and X3, are real and distinct, the system is hyperbolic. For a 
hyperbolic system, each eigenvalue denotes the propagation speed of some particular 
information. It is advantageous to obtain the numerical solutions of Equation (14) by 
the method of characteristics since the corresponding characteristic equations are 
ordinary differential equations. 

The characteristic equations are established by combining the original system 
equations with an eigenvector of the coefficient matrix as follows 

V[7~ + A|-]q>VS i=l,2,3 (17) 
Ot OK 

where J{ is the left eigenvector such that 

li-[X\-K\ = 0 (18) 
Equation (17) can be written as ordinary differential equations 

A~ = lVS i=l,2,3 (19) 
dt 

along the characteristic curve 

±=*+Ar*. (20) 
dt    dt 3c 

The numerical solutions, say at a point "o" and at time level n, can be obtained by 
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solving three characteristic equations integrated over the characteristic curves 

?i-(q"0-q;:1) = At-z?i-s       y=i,2,3 (21) 

where At is the time step, x1; x2 and x3 denote three points traced back from the point 
"o" through three characteristic curves over one time step. Numerical stability requires 
that the Courant condition is satisfied 

At-|A.| 
I    In 

Ax 
<1 (22) 

where Ax is the spacing step and \X\    is the maximum eigenvalue throughout the 

entire simulation period and over the entire computational domain. 
To provide some insight into the characteristics of this system, eigenvalues and 

the corresponding eigenvectors are computed for three typical coastal conditions as 
shown in Table 1. T is the wave period, and L is the local wave length. 

Table 1 Characteristics for Three Typical Coastal Conditions 
Case H 

(m) 
T 

(sec) 
h 

(m) 
h/L CL 

(m/s) 
Cg 

(m/s) 
Eigenvalue 

(m/s) 
Eigenvector 

*i ii ^ 

A 1.0 10 100 0.64 31.32 7.80 
31.32 0.01 0.50 1.00 

8.32 1.00 -0.01 -0.01 
-31.32 0.01 -0.50 1.00 

B 1.0 10 10 0.11 9.90 8.02 
10.00 0.28 1.00 0.61 
7.85 1.00 -0.19 -0.10 

-9.90 0.01 1.00 -0.61 

C 1.0 10 2 0.04 4.43 4.45 
5.24 0.63 1.00 0.23 
3.84 -0.61 1.00 0.29 

-4.48 0.01 1.00 -0.26 
Cases A, B and C represent deep, intermediate and shallow water condition, 
respectively. The linear long wave speed CL=(gh)1/2 and wave group speed Cg 

estimated from Fourier approximation wave theory are included Table 1 for 
comparison with the eigenvalues. Based on the above investigation, the following 
observations are appropriate: 
• In each of the three cases, the three eigenvalues are real and distinct. Thus the 

system is generally hyperbolic. 
• In both Case A and Case B, the first and third eigenvalues are almost equal to the 

linear long-wave speed in magnitude. This is expected since the mean flow part 
of the system is similar to the shallow water wave equations, as stated in Section 
2. The characteristics corresponding to these eigenvalues are termed wave 
characteristics(Katopodes and Strelkoff 1979). 

• The second eigenvalue in each case is almost equal to the wave group speed. 
Thus the characteristics corresponding to this eigenvalue describes wave energy 
transfer, and they are accordingly termed energy characteristics(Xu 1996). 

• As implied in Equation (17), the eigenvector measures the interaction among the 
characteristic equations. In Case A, the first component of the eigenvectors for 
the wave characteristics is always much smaller than the second and third 
components,  while the first component of the eigenvector for the energy 
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characteristics is much greater than the other two components. This suggests that 
the wave energy transfer in deep waters is little affected by the mean flow 
circulation, and vice versa. From Case A to Case C, the first component i\ of the 
first eigenvector increases, suggesting that interaction between the mean flow and 
the wave energy transfer becomes stronger as the water shallows. 

• In all three cases, the first component of the eigenvector of the third eigenvalue 
(negative) is always much smaller than other two components. This indicates that 
the backward propagation of the information described by the wave 
characteristics is little affected by the forward wave energy transfer. 

4.2 Open Boundary Conditions 
Numerical simulation in coastal engineering normally focuses on only a small 

portion of a larger system. Open boundaries are present at the locations of truncation 
from the larger system. In the numerical model, open boundary conditions must be 
specified to allow information to cross the open boundaries unhampered, as would be 
in the real situation. 

For this case, three constraints are necessary and sufficient at the boundary. To 
permit interior information to propagate out of the domain, the characteristic 
equations corresponding to the eigenvalue denoting outgoing propagation should be 
used as part of the boundary conditions. In general, additional constraints would be 
required to supplement the characteristic equations for outgoing information. Ideally 
field data should meet such a need, but field data is only rarely available. Instead, 
additional (and artificial) conditions are generally called for. These extra boundary 
conditions coupled with the characteristic equations for outgoing information should 
be non-reflective or at most weakly reflective. 

In this study, the Hedstrom(1979) approximate open boundary conditions are 
used whenever necessary. Hedstrom's approximate boundary conditions for a three- 
equation hyperbolic system are briefly described here. Suppose that of the three 
eigenvalues, m(<3) eigenvalues denote outgoing characteristics. The boundary 
conditions 

2i»5 = ° (m<i<3) (23) 
at 

prevents back reflection of waves into the solution domain from the boundary if there 
are only simple waves going out.  In a linear case, the eigenvalues and eigenvectors 
are constant. The condition described by Equations (23) is equivalent to 

1{ • q =   constant (m < i S 3) (24) 
This is the Riemann invariant along the incoming characteristics, i.e., the projection of 
the dependent variable vector on the incoming characteristic curve is constant. 

Wave height is normally given at the offshore boundary as external forcing. Then 
only one of the Equation (23) conditions is needed, because the given wave height 
and the characteristic equation corresponding to outgoing waves would provide two 
boundary conditions. The extra condition corresponding to the wave characteristics 
should be used because the specification of wave height makes the condition 
corresponding to the energy characteristic redundant. 
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4.3 Application to Wave Propagation at Egmond Beach 
The cross shore bottom profile at Egmond beach(Derks and Stive 1984) is shown 

in Figure 1. The incident wave period and height are 8.7 seconds and 2.46m, 
respectively. The wave forcing is suddenly imposed at the offshore boundary and 
persists throughout the simulation. The system is assumed to be initially quiescent, 
with wave height, wave setup and current all zero at the beginning of the simulation. 

The computational domain is about 3000 m long, with a water depth at the 
offshore boundary of about 16 m. A uniform space step of 10 m is used with a 
corresponding time step of 0.7 second. 

0 500 1000 1500 2000 2500 3000 

Distance from Offshore Boundary (m) 

Figure 1 Bathymetric Profile At Egmond Beach 
The wave height, wave setup and undertow velocity at eight time levels are 

shown in Figures 2 through 4. After seven minutes, a steady state wave height profile 
is established. It takes about fourteen minutes for the wave setup and undertow 
current to reach an equilibrium state. As waves approach to the shoreline, the mass 
transport is predominantly shoreward, causing a significant water surface pulse 
(Figure 3) and shoreward mass transport. After waves reach the shoreline, seaward 
undertow current develops(Figure 4). The transient wave setup and undertow current 
are much greater than steady state wave setup and undertow current, suggesting that 
the transient dynamics in coastal process could be very important. The observed 
(Derks and Stive 1984) wave height and setup are also plotted in Figures 2 and 3 as 
the small circles. Good agreement is found for both wave height and wave setup. 

The above case study leads to the following conclusions: (1) the numerical 
scheme is appropriate for simulating the evolution of mean wave parameters in one 
spatial dimension; (2) the open boundary conditions work satisfactorily. 

5. Simulation of Mean Wave Parameters in Two Spatial Dimensions 
The integral governing equations in two spatial dimensions, Equations (7) 

through (10), can be written in the quasilinear form 
da     .    da     .    da 
— + A.. —+ AV —= S 
dt       *dx      y dy 

where q is the dependent variable vector, q =[H, rj, Ut,, VJ, Ax and Ay are the 

(25) 
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Figure 4 Evolution of Undertow Velocity 

coefficient matrices, and S denotes the sink or source vector. Due to the limit of 
space for this paper, the complexity of the integral equations and, the introduction of 
closure variables, the exact expressions for the coefficient matrices and the sink terms 
are not presented here; see Xu (1996) for details. 

5.1 Characteristic Equations and System Properties 
Again the information propagation described by equation (25) can be 

characterized using the eigenvalues of the coefficient matrices, Ax and Ay. In two 
spatial dimensions, however, the eigenvalues are azimuth-dependent. If the azimuth 
on the x-y plane is denoted by a normal vector n [cos(0), sin(0)], then the eigenvalues 
for Equation (25) are defined as 

detr*. • I - A x cos(9) - A y sin(0)] = 0 (26) 

which in general is a fourth order polynomial in X. If the four roots of X are all real 
and distinct, the system is hyperbolic. The eigenvalues for the entire range of the 
azimuth form a family of characteristic surfaces with its normal vector defined as [-X, 
cos(0), sin(0)]. These characteristic surfaces are generally inscribed by a cone. The 
generation lines of the cone are termed bi-characteristics. The characteristic 
equations can be derived by linearly combining the system equations through the 
eigenvector of the coefficient matrices 
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jVa       xdx      y dy' 
';S j = 1..4 (27) 

where £j is the left eigenvector 

£;[\-I-Axcos(0)-Aysin(0)] = O (28) 

On the characteristic surfaces, the characteristic equations can be written with 
differentiations in two directions only, conventionally along the bi-characteristics and 
a cross-direction which is almost perpendicular to the bi-characteristics. Such 
characteristic equations are still partial differential equations. There are infinite sets of 
eigenvalues and characteristic equations at a point since they are azimuth-dependent. 

To appreciate the characteristics of this system, the eigenvalues are computed 
numerically for the following condition: wave direction (j>=7c/2, wave height=1.0 m, 
water depth h=10 m, mean water elevation T|=0, and mean flow velocities under 
wave trough Ub=0.5 m/s and Vb=0.5 m/s. The eigenvalues as a function of the 
azimuth in the range from 0 to 2% are shown in Figure 5. Also shown in the figure 
are the three eigenvalues of the shallow water wave equations under the same 
condition along with their analytical expressions. Of the four eigenvalues at each 
azimuth, two are identified by 7^,, denoting wave characteristics, one labeled by X„, 
referring to the energy characteristic, and the fourth by Xf denoting the flow 
characteristic(Katopodes 1979). The flow characteristics is an extra characteristic 
family in the two spatial dimensions. The magnitude of the eigenvalue of the flow 
characteristics is the same order of the magnitude as the flow velocity. The following 
observations are appropriate: 
• This system is generally hyperbolic because the four eigenvalues at any azimuth 

under the given condition are real and distinct. 
• Under the assumed condition, the eigenvalues of wave and flow characteristics are 

almost identical to those for the shallow water wave equations. The eigenvalue of 
the energy characteristics may be approximated by Cg cos((j) - 6), in which Cg is 

the plane wave group speed. 
15 
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Figure 5 Variation Of Eigenvalue X With Azimuth 0 
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The eigenvalues A^and X~w of the wave characteristics are identical when 

considering the entire range of azimuth (0, 2%) since X+
w (8)=- X~w (9+TC). Only 

one of them, conventionally X+
w, is used in describing wave characteristics. The 

eigenvalues of the wave characteristics vary slightly with azimuth. Information 
spreads out at an almost uniform speed. 
The maximum eigenvalue is of particular importance to numerical simulation 
because it defines the domain of influence or dependence. The direction 
corresponding to the maximum eigenvalue is termed a principal direction (Xu 
1996). In the principal direction, the eigenvalues and characteristic equations of 
the shallow water wave equations in two spatial dimensions are the same as those 
in one spatial dimension 

5.2 Numerical Scheme 
The method of characteristics is used to obtain numerical solutions. The major 

issues in numerically simulating the evolution of mean wave parameters in two spatial 
dimensions are (1) evaluation of wave propagation direction, which is used in the 
closure of wave apparent stresses, (2) development of a numerical scheme 
recognizing that there are infinite characteristic equations, (3) open boundary 
conditions, and (4) evaluation of derivatives in the cross direction (cross-derivatives). 
Due to the limit of space here, the evaluation of wave direction is not discussed. 

The bi-characteristic method proposed by Bulter (1962) is adapted to develop a 
numerical scheme for the present system. This method is based on the combination of 
the characteristic equations along several bi-characteristics to minimize the 
coefficients of the cross derivatives. A total of six directions are involved in this case. 

n+1 

X / 
/ ?Jk / 

/              6   <B 

/ 11 «sC2 

1       / 

X 

Figure 6 Illustration of Bi-characteristics Scheme 
The six points traced back from point "p" by the respective characteristic velocity are 
labeled as 1 to 6 at time level n. Of the six points, 1,2,3 and 4 are on the wave bi- 
characteristics corresponding to azimuth 9=0, K/2, n and 3K/2, respectively. Point 5 
is on the flow path, and point 6 is along the wave propagation direction. The 
coordinates of the points 1 through 6 can be estimated by using the following 
expressions with sufficient accuracy (Xu 1996) 

^2,4,5 xp-UbAt; 
y^^yp-VbAt; 

xu=xp-(Ub+C)At; xe =x„ • A,eAtcos()> 
Yi.3 = yP - (vb +C)At;        y6 = yp - A.eAtsin<|> (29) 

where C is the long wave speed and <|> is the wave propagation direction. The values 
at these points are interpolated from the values at surrounding grid points. 
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The integration of the energy characteristic equation along 6-p gives 

/?Hp +/« Tjp +*|UbiP +*«Vb, ^I
H

6 + 4^6 + 4Ub,6 +^Vb>6 + [a6|^ 
•   .    oH        dr\    .   dr\        oTJb    r oUb oVb    .    aVb    0 n  A     (

30) 
ay        ox        oy ax ay ox ay 

Summing up the four wave characteristic equations along 1-p, 2-p, 3-p and 4-p and 
subtracting twice the continuity equation along 5-p gives 

( Z/1)HP +(s4 -2)rip +(i4)ub,p +(s4)vb,p = 
i=l,4 i=l,4 i=l,4 i=l,4 

[ Z'IHJ +(s4ni -2TJJ)+ s 4ub>i 
+24nvb;i + 

(ta;)f itlbof + ( M§ + ( Ed!)f + 
(31) 

i=i,4     ox     i=i,4     ay      i=i,4    ax     1-1,4     ay 

( Z'^H Zf,)^- + ( Zs,)^ 2*,)^ + ( IS,)]- At 
i=i,4      ax      i=i,4     ay       1=1,4      ax      1=1,4      ay      i=i,4 

Subtracting the wave characteristic equation along 1-p from that along 3-p gives 

(4 -/?)HP +(4 -4)nP +(4 -4)ub,p + (4 -4)vb,p = 
4H, - 4H3+4^ - 4% +4ub>1 - 4ub,3 +4vb;1 - 4vb,3 + 
[(a1-a3)^ + (b1-b3)|^ + (c1-C3)^ + (d1-d3)^ + (e1-e3)^     (32) 

ox ay ox ay ox 

+(fi-f3)^ + (8i-g3)— + (h1-h3)^ + S1-S3]-At 
ay ax oy 

Similarly, subtracting the characteristic equation along 2-p from that along 4-p gives 

(4 -/«)H +(/* -f\)\Ht\ -4)ub,p +(4 -4)vb,p = 
^jH2 -^H^ + ^2T|2 ~"'^2rl4 +^3Ub>2 

_^3Ub4 +*4Vb2 — '4^4 + 

[(a2 -a4)—-+ (b2 -b4)-—+ (c2 -c4)-± + (d2 -d4)-i + (e2 -e4)—=-     (33) 
ox ay ox ay ox 

+ (f2-f4)^ + (g2-g4)^- + (h2-h4)^ + S2-S4]At 
ay ox oy 

It can be verified that the coefficients of the cross derivatives through these 
combinations are much smaller than those without using such combinations. 
Equations (30) through (33) are used to obtain the solutions for H, r\, Ub and Vb. 

5.3 Open Boundary Conditions 
At an open boundary, some bi-characteristics lie outside the computational 

domain. So only some of Equations (30) through (33) can be derived. As a result, 
extra boundary conditions need to be specified. 

In the study of the characteristics of the shallow water wave equations, it is found 
that the characteristics along a flow path in a two dimensional space behave exactly 
the same as in a one-dimensional space(Xu 1996). Heuristically, the Hedstrom open 
boundary conditions introduced in Section 4.2 may be extended approximately to two 
spatial dimensional problems as long as the open boundary conditions are applied in 
the flow direction. 

If there are m outgoing characteristics, then the 4-m Hedstrom approximate 
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boundary conditions in the flow direction are formed as 

-     8*-«       j = m..4 
J     8t 

• 0 (34) 

5.4 Simulation of Oblique Wave Propagation 
To test the performance of the numerical scheme and open boundary conditions, 

the numerical model is applied to simulate oblique wave propagation. Waves are 
assumed to propagate into an initially quiescent square domain from the left lower 
corner at an angle of 45° with the x-axis. The water depth of the domain is 10 m, and 
the incident wave height is 0.5 m with a wave period of 10 seconds. A uniform grid 
with Ax=Ay=10m is used, coupled with a time step of 0.5 second. Wave height is 
gradually imposed at the inflow boundaries over three time steps. 

The computed wave height surfaces at six time levels are shown in Figure (7). 
At time 50 seconds, waves pass through the computational domain, and a steady state 
wave field is established. The solutions at the inflow and outflow boundaries are 
smooth at all six time levels, demonstrating that the imposed boundary conditions do 
not cause any appreciable numerical reflection at the boundaries. 

The propagation speed is estimated by dividing the distance by the time interval. 
The estimated speed of energy transfer is 8.25 m/s, which is close to the wave group 
speed estimated from Fourier approximation wave theory of 8.34 m/s. 
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Figure 7 Evolution of Wave Height Envelops 
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6. Summary 
In this study, a wave-averaged depth-integrated model for the evolution of mean 

wave parameters was developed. This model is valid for both shoaling waves and 
surf zones provided that periodic motion is dominant over turbulence. The physical 
processes that this model can simulate include wave shoaling, refraction, diffraction, 
wave-current interaction and mean flow circulation, etc. The proposed numerical 
scheme can be used to obtain the numerical solutions effectively and with negligible 
reflection at open boundaries. The transient behavior in the evolution of mean wave 
field can be adequately modeled. 

It was clearly shown in this study that transient dynamics may be important for 
coastal evolution. The wave-driven current and mean water surface variation are 
significantly greater than the respective steady state values. Since the wave 
conditions in deep water are rarely invariant, the simulation of transient behavior is a 
significant feature of this model. 
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