
CHAPTER 224 

ANALYTICAL SOLUTION FOR THE WAVE-INDUCED EXCESS 

PORE-PRESSURE IN A FINITE-THICKNESS SEABED LAYER 

Waldemar MAGDA * 

ABSTRACT 

This paper presents the analytical solution to the wave-induced excess pore- 
pressure oscillations in permeable seabed sediments, derived for the case of 
limited thickness of the seabed layer. In order to show the utility of the an- 
alytical solution, a wide parameter study has been performed with a special 
emphasis to the relative compressibility of the two-phase (soil skeleton - pore- 
fluid) medium. The results of example computations are discussed with respect 
to the accuracy of the 'finite-thickness' analytical solution for the pore-pressure. 

INTRODUCTION 

The excess pore-pressure oscillations in permeable seabed sediments, induced 
by regular surface waves, have been the subject of several investigations and 
theoretical considerations over the last 40 years. 

For many purposes in soil mechanics, it is permissible to uncouple the 
soil and fluid parts of any analysis in order to treat them separately. How- 
ever, it may also be desirable on occasion to analyse the true coupled perform- 
ance of a composite continuum, in which the two phases interact. Examples 
of practical importance would involve external loads which vary in time, and 
structure-foundation interaction analyses where the generation of foundation 
pore-pressure is completely dependent upon the relative stiffness of the compo- 
nents of the system. That is, a stiff or inhomogeneous structure causes different 
pore-pressures from a flexible or homogeneous one. 
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In many practical problems appeared in the coastal engineering, there 
are many subsoil stratifications and hydro-engineering structures that can be 
treated as vertically two-dimensional. Assuming also that the seabed is loaded 
by harmonic waves characterized by long crests parallel to each other, then as 
a result the seabed is deformed under plain strain conditions. Under these con- 
ditions, the following two equations, describing elastic deformations, together 
with the 'storage' equation constitute the coupled problem and can be written 

C (^- 4- ^-\ 4-       G        d   f9Ux 4- ^A  = ** (t    \ 
\8x2   +  8z2 ) + 1 - 2M dx \ dx   +  dz )      dx {    ' 

n(d
2uz      d2uz\ G      d  fdux      duz\      dp 

G\'dx^ + ^^) + r^d'z\dx' + 'dz~)-d'z (16) 

kxd
2p      &P_ ynpdp = j_ /ftt,      duA 

kz dx2      dz2        kz   dt      kz\dx       dz ) ( c' 

where: p is the wave-induced excess pore-pressure, ux and uz are the horizontal 
and vertical displacements of soil skeleton, respectively, G is the shear modulus 
of the soil skeleton, (i is the Poisson's ratio, kx and kz are the coefficients of 
permeability of soil in horizontal and vertical direction, respectively, 7 is the 
unit weight of the pore-fluid, /?' is the compressibility of the pore-fluid, n is 
the porosity of soil, x and z are the horizontal and vertical coordinates of the 
Cartesian system, respectively. 

The problem described in Eqs. (la) to (lc) is very often called as a 'storage' 
problem because the third is based on the 'storage' equation given by Verruijt 
(1969), as the governing equation for flow of a compressible fluid in a homoge- 
neous compressible porous medium. 

The earlier simplified theoretical solutions give only approximated values 
for the pore-pressure response. Others, more advanced theories (e.g.: Madsen, 
1978; Yamamoto et al, 1978; Okusa, 1985) seem to be enough developed in 
order, at least, to describe the governing problem by introducing additional, 
meaningful parameters giving thereby a possibility of wide analyses of real soil- 
water conditions. All these three theories have the same physical background 
and they differ from each other in the applied method of deriving the particular 
solution. Okusa (1985), as a first one, discussed also the problem of phase-lag 
(time-shift) phenomenon existing in a gas-laden sediment for the wave-induced 
pore-pressure and stresses. The theoretical values calculated from the 'storage' 
theory lie far away from the 'potential' solution, originally presented by Putnam 
(1949) and based on the assumptions of incompressible pore-fluid and soil skele- 
ton. These rigorous assumptions differ strongly from the realistic conditions of 
the soil and pore-fluid two-phase medium. The differences between the 'stor- 
age' solution and the 'consolidation' solution proposed by Moshagen & T0rum 
(1975) and assuming compressibility only for the pore-fluid, are not so drastic 
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but they might become meaningful especially when a relatively compressible 
soil (e.g., loose sand) is concerned. 

'FINITE-THICKNESS' ANALYTICAL SOLUTION 

The solutions obtained from the 'potential' problem and 'consolidation' problem 
approximate roughly the pore-presure response. Both of these solutions can be 
used in a feasibility study. More precise information on the pore-pressure atten- 
uation and phase-lag distribution with depth can be obtained at the preliminary 
or detailed design level where the both components of two-phase system (i.e., 
soil skeleton and pore-fluid) are considered to be compressible. 

The appropriate analytical solutions for the pore-pressure response in case 
of a homogeneous, poro-elastic, semi-infinite seabed were derived by many au- 
thors (e.g.: Madsen, 1978; Yamamoto et al., 1978; Okusa, 1985) and obtained in 
terms of the pore-pressure and effective stresses in seabed sediments. Analytical 
solutions of the 'potential' and 'consolidation' equation for the case of limited 
thickness of the seabed layer are also well known (e.g., Moshagen & T0rum, 
1975). Using the general solution presented by Madsen (1978), Magda (1989, 
1992) derived a particular solution for the wave-induced excess pore-pressure 
under the assumption of a finite thickness of the seabed layer. A 'finite thick- 
ness solution' has a very important bearing on further analysis and verification 
of laboratory test results but would alsd have a wide application to several 
engineering problems where natural soil-water conditions exist. 

Boundary conditions 

The boundary conditions at the surface of the seabed require that both the 
vertical wave-induced effective stress crz and the wave-induced shear stress r 
are zero, and additionally, the pore-pressure p at the seabed surface is induced 
by the hydrodynamic bottom pressure. Therefore, one has to fulfil the following 
boundary conditions at the surface of the seabed (z — 0): 

p — PQ exp[i(aa: — ut)] (2a) 

<rz = 0 (26) 

T = 0 (2c) 

Field investigations frequently prove the existence of a limited thickness 
of permeable and isotropic seabed layer or layers with different properties in 
the upper boundary of seabed. In such cases, the soil profile may look like a 
sand layer, possibly with permeable sub-layers, a few metres thick overlaying 
an impermeable clay stratum. 
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If a finite, permeable layer overlaying a stiff and impermeable base is consid- 
ered the boundary conditions at the bottom of permeable seabed layer (z = — d) 
have to be specified. And thus, 

uz = 0 (2d) 
dp i=° w 
ux = 0        completely rough base (2/) 

T = 0        perfectly smooth base {2g) 

where: p is the wave-induced excess pore-pressure, crz is the wave-induced ef- 
fective vertical stress, r is the wave-induced shear stress, ux and uz are the 
horizontal and vertical displacements of the soil skeleton, respectively, z is the 
vertical coordinate of the Cartesian system, and d is the thickness of a perme- 
able seabed layer. 

Finite thickness solution 

Below, a solutions for the instantaneous wave-induced excess pore-pressure in 
the seabed sediments is presented whereas the problem is considered in terms 
of the wave response of a single layer resting on a stiff impermeable base. The 
solution derived in order to obtain the response of a single layer, can be suc- 
cessfully used for the case of a multi-layered seabed; however, the number of 
mathematical manipulations will increase substantially. 

Taking the general solution for the wave response together with the bound- 
ary conditions for a finite layer overlaying a perfectly smooth, stiff and imper- 
meable base, a set of six linear and complex-valued equations is obtained. This 
system of equations can be solved either in its complex form or in form of real 
values; this would induce however twelve equations involved in the solution 
procedure. 

An implementation of the six boundary conditions leads to a system of six 
coupled linear equations. Because of rather lengthy form of each of 36 constant 
coefficients accompanied by unknowns Yi,...,6, the calculation procedure has 
been programmed. The matrix representation of the equation system is as 
follows: 

[DRY} = [B] (3) 

where each of these three matrices can be written as: 
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Matrix D contains constant coefficients accompanied by proper unknowns 
(i) 

in equations of the boundary value problem. And thus, Dj represents a set 
of constant coefficients related to j-th unknown in i-th equation. There are 
six equations where i-equation (i = 1,...,6) relates to the boundary condition 
(Eqs. 2f, 2d, 2b, 2c, 2a, and 2e, respectively). Matrix Y represents unknowns Yj 
(j = 1,..., 6), and matrix B is composed of free term in each expression for the 
boundary condition problem. The 36 coefficients of matrix D can be computed 
using the following relationships (Magda, 1992): 
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D• = -D<2) exp(2kad) (7.2/) 

D{3) = Xia
4 - XxX2a

2 + XjX3 + X5ia (7.3a) 

D(
2
3) = 4Xia3 - 2X1X20 (7.36) 

Dl3) = D[3) (7.3C) 

D<3) = -Z>2
3) (7.3d) 

£><3) = XiifeV - XiX2&V + X1X3 + X5ia (7.3c) 

^3) = ^3) (7.3/) 

D<4) = a + Xiio4 - XiX2ia
2 + XtXji (7.4a) 

D^4) = 1 + 3Xiia3 - XiX2io - XjXsii (7.46) 

D? = -D?                                        a (7.4c) 

D<4) = D2
4) (7.4d) 

Z><4) = ifea + XjFia4 - XiX2fcia2 + XiX3i (7.4e) 
k 

D^ = -D^ (7.4/) 

D\5) = X7(a
4 - X2a

2 + X3) + X4ia + X6 % (7.5a) 

D2
5) = 2X7a(2a2-X2) + 2X6T (7.56) 

1 

DW = DW (7-5c) 

D[5) = -Z>2
5) (7.5d) 

D<;5) = X7(£V - X2ifeV + X3) + X4ia + X6^ (7.5e) 

D<6) = Z><8) (7.5/) 
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D(
2
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Z>(6) = -D<5)fcaexp(fcad) (7.6/) 
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The above presented set of coefficients is derived to solve the pore-pressure 
problem with the assumption of rough basement under the permeable seabed 
layer. Principally, the same procedure is applied for a finite layer overlaying 
a completely smooth base. The only difference is that the boundary condition 
(2f) has to be replaced by the relation (2g) which is foreseen for the smooth base 

condition. It means that the sub-set of constant coefficients D: is built up 
using constant coefficients of Eq. (2g). All the elements in the other two matrices 
(i.e., X and B) stay unchanged. Equations (7.6a) to (7.6f) were derived for the 
case of perfectly rough basement. If a perfectly smooth basement is assumed 
Eqs. (7.6a) to (7.6f) have to be replaced by the following set of equations in the 
computational procedure, respectively: 

D^ = X6(a + Xiia4 - X1X2ia
2 + XxX3i) exp(-ad) (7.7a) 

D2
7) = X6 [1 - d + SXiia3 - Xxdia* - X-,X2ia + XiX2dia2 

xixj
{ad + 1) 

exp(-ad) (7.76) 
u 

= -D<7) exp(2arf) (7.7c) 

D{P = X6 [l + d + 3Xiia3 + Xidia1 - XiX2ia ~ X^Xidia2 

+XlX3
iS-^ll exp(od) (7.7d) 

D\ ' = XAka + XiiifeV - X1X2ika2 + XiX3-)exp(-kad)       (7.7e) 
a 

where: 

D\'' = -D\')exp{2kah) (7.7/) 

D' = X7(5a4 - 3X2a
2 + X3) + XiX3X6 + X^ia + 3X6 % (8a) 

% 
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i 
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X, =€?(<?*£--A (8c) 
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X5 = -4- (8*) 
X6 = -G (8A) 

X7=X1(X4X5+X6) (8t) 

Solution of the coupled linear equations' system [Eq. (3)], obtained in terms 
of coefficients Yi,...^, constitutes simultaneously an explicite solution to the 
pore-pressure (and also to the wave-induced effective stresses and strains) within 
the seabed layer of finite thickness. The pore-pressure solution can be written 
as: 

" + h%) (9) 

where: 

<rx = Xi(T! + X5T2)exp[i{ax - ut)] (10) 

dr 
— = X6[2Y2aexp(az) + (Y1 + Y2z)a2 exp(az) 
oz 

— 2Y^aexp(—az) + (Y3 + Yiz)a exp(—az) 

+ Y$k2a2 exp(kaz) + Y6k
2a2 exp(—kaz) 

+ T2ia] exp[i(aa; — cot)] (11) 

Ti = *a[(Yi + Y2z)a2 exp(az) + (Ys + Ytz)a2 exp(-az) 

+ Y5k
2a2 exp(fcaz) + Y9k

2a2 exp(-fcaz)] (12) 

T2 = Xi{4Y203 exp(az) + (Yi + Y"2z)a4 exp(az) 

— AY^a3 exp(-az) + (Ys + Y^z)^ exp(—az) 

+ Y$k a  exp(fcaz) + Y$k a exp(—kaz) 

— X2[2F2aexp(az) + (Yi + Y2z)a2 exp(az) 

— 2Yiaexp(—az) + (Y3 + Y4z)a  exp(-az) 

+ Y5& a exp(feaz) + Y$k2a2 exp(—kaz)] 

+ X3[(Yi + Y2z)exp(az) + (Y3 + Ytz)ex.p(-az) 

+ Y5 expikaz) + Ye exp(—feaz)]} (13) 
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in which: 

and 

J = t.«7{n/9' + (l-2M)/(2(l-/i)G)} 
Kz 

where, additionally to the formerly described parameters: a is the wave number, 
w is the wave angular frequency, and i is the imaginery unit. 

Having the formula for the pore-pressure p distribution with depth z, which 
is written in a complex-number form, the formulae describing the amplitude, 
\p\, and the phase-lag, S, of the pore-pressure oscillated in seabed sediments, 
with respect to the phase of bottom pressure oscillations, can be easily obtained. 

RESULTS OF EXAMPLE CALCULATIONS 

In order to perform illustrative calculations the following input data were used: 

- coefficient of isotropic permeability:   kx = kz = 0.0001 rn/s 
- porosity of soil:   n = 0.4 (loose sand), n = 0.36 (dense sand) 
- Poisson's ratio:   fi = 0.3 
- Young's modulus of soil:   E = 104 kN/m2 (loose sand), and E = 105 kN/m2 

(dense sand) 
- degree of saturation:    from S = 1.00 (fully saturated soil conditions) to 

S = 0.95 (unsaturated soil conditions) 
- seabed layer of finite thickness:   d = 0.5 m (smooth or rough basement) 

- wave period:   T = 6 s 
- water depth:   h = 4.5 m 

Using the analytically derived finite-thickness layer solution (Magda, 1989, 
1992), two different boundary conditions assumed at the bottom of the perme- 
able seabed layer [Eqs. (2f) and (2g)] were introduced in order to simulate either 
rough, (u,. = 0, i.e. no movement of the soil skeleton) or smooth (T = 0, i.e. 
no friction and free movement) surface of a rigid and impermeable basement 
underneath the permeable seabed layer. 

The results of pore-pressure response in a permeable seabed layer of finite 
thickness, overlaying either a smooth or rough impermeable stiff base, are given 
in Fig. 1 (the solid-line denotes the rough base condition and the dashed-line 
denotes the smooth base condition) in terms of the pore-pressure amplitude 
and phase-lag as functions of depth in the seabed. Different soil saturation 
conditions (S = 0.95 — 1.00) as well as different compressibilities of soil skeleton, 
i.e.: E = 10s kN/m2 for dense or semi-dense sandy sediments (see Fig. 1), and 
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Figure 1. Pore-pressure amplitude and phase-lag distribution with depth for 
different saturation conditions and type of impermeable basement 
(finite-thickness-layer solution, E = 10s kN/m2 - dense sandy sed- 
iments) 
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E = 104 kN/m2 for loose sandy sediments (the results are not presented here 
in graphical form) were introduced into computations. 

In case of dense sandy sediments (Fig. 1), the difference between the rough 
and smooth base is relatively small. The influence of introduction of the smooth 
base is magnified when loose sandy sediments are considered. In both cases (i.e., 
loose and dense sediments) the smooth base condition makes the pore-pressure 
attenuation as well as the phase-lag larger with respect to the rough base condi- 
tion. Althoug the pore-pressure gradient is more inconvenient (more dangerous 
for the stability of seabed sediments) when the smooth base is assumed, al- 
though the rough base condition seems to be more natural. 

Performing comparative calculations and wide parameter studies, it was 
found that fully saturated soil conditions (5 = 1.00) and a finite thickness of 
the seabed layer cause some unexpected disturbances in the pore-pressure dis- 
tribution with depth, namely, the pore-pressure value at the impermeable base 
exceeds the value of inducing hydrodynamic pressure at the seabed surface (see 
Fig. 1) which normally - from the physical point of view - should not appear. 
This phenomenon can be explained if the value of relative compressibility of 
both components in the two-phase system (i.e., soil skeleton and pore-fluid) as 
well as the boundary condition choice are investigated carefully. 

It is believed that the discrepancy between the calculated and logically 
expected (i.e., a vertical-profile distribution with depth) values of the pore- 
pressure amplitude might be caused by: 

- ill-conditioned coefficient matrix D (numerical problem), or 
- unrealistic boundary conditions assumed at the surface of seabed sediments 

(boundary-condition problem), or 
- interaction of both of them (mixed problem). 

In order to get more detailed insight into the problem, some additional 
computations were performed where the influence of different extreme values of 
the relative compressibilities of the two-phase medium was studied (Figs. 2 and 
3). 

The ratio between the absolute smallest and largest values in the coefficient 
matrix D differs in order between 1014 and 1022, in the case analysed and 
presented in Fig. 3. On the other hand, it is commonly known that the matrices 
like this one are ill-conditioned and can very often cause some serious numerical 
problems. 

In direct methods of solution, roundoff errors accumulate, and they are 
magnified to the extend that the governing matrix is close to singular (Press 
et al., 1989). In spite of the Gaussian elimination method, the following three 
methods, dealing with sets of equations that are either singular or else numeri- 
cally very close to singular, were applied: 

- LU decomposition, 
- iterative improvement of a solution, 
- singular value decomposition (SVD). 
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Figure 2. Test on numerical accuracy - pore-pressure amplitude and phase- 
lag distribution with depth for fully saturated soil conditions (S = 
1.00) (finite-thickness-layer solution, rough basement, fl'E = 4.2 x 
10°(2)(4) and j3< = 4.2 x 10"7 m2/kN or E = 107kN/m2) 
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Figure 3. Test on numerical accuracy - pore-pressure amplitude and phase- 
lag distribution with depth for fully saturated soil conditions (5 = 
1.00) (finite-thickness-layer solution, rough basement, j3'E = 4.2 
(const) and /3' = 4.2 x i0-7(-9)(-ii) m2/kN) 
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Although performing all computations in a double-precision mode, neither 
of these methods could avoid the numerical problems discovered in Fig. 1, con- 
firmed in Fig. 2 and strong emphased in Fig. 3. 

Figure 2 illustrates that by assuming a constant value of one of the com- 
pressibility parameters (i.e., the compressibility of pore-fluid /?' = 4.2 x 10~7 

m2/kN or Young's modulus of soil skeleton E = 107 kN/m2) and enlarging a 
value of the second one, the numerical problems do not leed to a dramatical 
increase of both the pore-pressure amplitude and the phase-lag, which show to 
be coherent and vary: amplitude - from 1.04 to 1.05, phase-lag - from 3° to 9°, 
computed at the bottom of seabed layer. A simultaneous increase of both the 
compressibility parameters (see Fig. 3), however, brigs both the pore-pressure 
amplitude and the phase-lag onto an enormous and unrealistic level (amplitude 
- from 1.04 to 5.5, phase-lag - from 3° to 80°, computed at the bottom of 
seabed layer). 

CONCLUSIONS 

Taking into account the results of the above presented analysis, it is a rather 
lucky coincidence that the realistic values of compressibility of the pore-pressure 
and soil skeleton are: /?' > 4.2 x 10~7 m2/kN and E < 105 kN/m2, respectively. 
These conditions guarantee that the order of maximum ratio between the ab- 
solute smallest and largest value in the coefficient matrix D will be always less 
than ca 1014. Only by a near-incompressible system (i.e., /?' = 4.2x 10~7 m2/kN 
for fully saturated soil conditions 5 = 1.00, and E = 105 kN/m2) some numer- 
ical problems are expected as indicated in Fig. 1. It was shown, however, that 
even in this case, the difference between the computed pore-pressure amplitude 
and the logically expected values (i.e., a vertical-profile distribution with depth) 
have no practical meaning and can be neglected. 

There is, however, another method that helps to solve the governing prob- 
lem, correctly, omitting simultaneously the above mentioned numerical prob- 
lems when solving the system of coupled linear equations. This method, based 
on a finite-element approximation of one-dimensional model for wave-induced 
excess pore-pressures and displacements in the soil skeleton, allows to omitt a 
bit artificial boundary conditions (i.e., crz — 0 and r = 0) assumed at the seabed 
surface, and gives more realistic picture of the pore-pressure field in permeable 
seabed sediments! The results of such a numerical analysis was published by 
Magda (1991, 1992). 

The preparation of all elements [Eqs. (7.1a) to (7.6f)] from the coefficient 
matrix D in the analytical solution requires much more mathematical operations 
with relatively small and large values before the equations system is solved. This 
complicated and superfluous procedure is omitted in the finite-element solution 
where the elements of coefficient matrix are computed using less mathematical 
operations. 
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