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OSCILLATIONS INDUCED BY IRREGULAR WAVES IN HARBOURS 

C.R. Chou *, W.Y. Han ** 

ABSTRACT 

An approach for predicting the harbour oscillations induced by undirec- 

tional irregular waves in a harbour of arbitrary shape and variable water 

depth is presented. Effects of partial reflection along harbour and breakwa- 

ter boundaries were considered by involving an energy dissipation coefficient 

in boundary conditions.Numerical results on wave heights within a rectangu- 

lar harbour were presented and a realistic harbour geometry was selected for 

trial computations. The results of the computations were verified through 

hydraulic model experiments. 

1. INTRODUCTION 

One of the major objectives in harbour engineering is the maintenance of 

a relatively undisturbed water surface within regions of interest. The most 

effective way to achieve this is to reserve some area in a harbour for natural 

dissipation. However, almost all the harbours, especially the fishery harbours, 

in Taiwan have insufficient space to allow for wave energy dissipation. An 

alternative way is to dispose the vertical dissipating quays in harbours, as 

many examples are found both in Taiwan and in Japan. However, the choice 
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of the most suitable location and length of the dissipating structure in a 

harbour is rather problematic. To solve this problem, engineers have usually 

relied on model experiments in the past, but numerical methods have also 

been developed. With the increasing speed of performance and lowering cost 

for acquisition of modern computers, numerical analyses seem to provide a 

potentially more economical alternative than model experiments. 

Many investigators have studied various aspect of the harbour oscillation 

problem. Miles and Munk(1961) used a point source method to analyze har- 

bour oscillations associated with radiation effects that expand from harbour 

entrance to offshore. They found the phenomenon of harbour paradox. Ippen 

and Goda(1963) used Fourier tranformation to analyze a rectangular basin 

with impermeable veritcal wall. Hwang and Tuck (1970) used a boundary 

integral method which involves the distribution of wave sources along the 

harbour boundary to calculate oscillations in harbours of constant depth and 

arbitrary shape. Lee(1971) applied Weber's solution to solve Helmholtz equa- 

tion and analyzed harbour oscillation of arbitrary shape with constant water 

depth. Chou and Lin (1986) used a boundary element method to analyze 

wave-induced oscillations in a harbour of arbitrary shape, together with rigid 

quays in variable water depth. 

The above studies, however, suffer a deficiency, in other words, they are 

applicable to complete reflection at the harbour boundaries. In fact, reflect- 

ing boundaries are not always fully reflecting. In order to treat this problem, 

Chou and Lin (1989) applied a boundary element method involving an energy 

dissipating coefficient a(— V 1 — Kr2) based on the theory of energy conser- 

vation in arbitrary reflecting boundary to analyze oscillations in a harbour 

of arbitrary shapes with constant water depth. Chou and Han (1993) also 

applied a boundary element method to analyze oscillations in a harbour of 

arbitrary shapes with variable water depth. 

All of the above studies can be applied only to small amplitude waves. 

However, waves in seas are one of the most complex and changeable phenom- 

ena in nature. In this paper, an extended model for undirectional irregular 

waves will be presented. For verification, model experiments were carried out 

and compared with numerical predictions. 
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2. THEORETICAL ANALYSIS 

2.1 Regular Wave 

Fig.l schematically shows a harbour configuration under consideration. A 

Cartesian coordinate system is employed, the origin of which is located at o 

with the z-axis vertically upwards. As shown in the figure, the flow field is 

divided into two regions by a pseudo-boundary surface I\: Region I is an open 

sea region with constant depth, and Region II is a harbour basin bounded by 

1\ and the harbour and breakwater boundaries, with variable water depth. 

Region    X 

/ ~~^^       Incident wave 

/ 
Paeudo-boundary \ \ 
aurtaca   Yt Zty                               F««udo-boundary 
for region   II /]°Vv                               lin.   Si 

/ 
/                            J 

1                    ^/j 

//             \.                          for  region    I 

7 r2    V\                ^ i         \\                \ 
region   II 1    \^                               \ 
v       7r3  >^. ^A— 

Fig. 1 Definition sketch 

Usual assumptions of the fluid being inviscid and incompressible and the 

flow being irrotational are adopted here. We consider linear waves, having 

angular frequency a{— 2-ir/T, T is the wave period) and amplitude £o incident 

from the open sea at an angle of w against the x-axis. Fluid motions in both 

the regions will then have velocity potentials as follows: 

$(a;, y,z;t) = — • <j>(x, y, z) • exp(-iat) (1) 

where g is the gravitational acceleration,  and <j)(x, y, z) must satisfy the 

Laplace equation V2 <f> = 0 

Applying Green's law(Chou and Han(1993)), the potential function for 

any point in Region I can be calculated from the following integral equation: 

cf(x,y) = £ lClH0t
1\kr))^f(Z,V)-r(t,rl)^(^\kr)))ds    (2) 

where /* (£, 77) is the potential function specified by the geometric condition 

of the boundaries in Region I, df* (f, r/)/du is its normal derivative with v the 
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local normal coordinate to the boundary taken outwards.   Ho^'(kr) is the 

zeroth order Hankel function of the first kind, and r = \{x — £)2 + (y — rj)2] 

is the distance between a point under consideration and the boundary. The 

factor c equals to unity within the boundary, but will have a value of 1/2 on 

boundaries. 

In the numerical analysis, the boundary Si ,where c=l/2, is discretized into 

M segments, each having a constant element. Equation (2) is then rewritten 

in a matrix form as 

{F*} = IK*]{T} (3) 

where {F*} and {F } are the potential function and its normal derivative 

on the pseudo-boundary Si, and [K*] is a coefficient matrix related to the 

geometric location of Si. 

According to Green's second identity law, velocity potential (/>(x, y, z) at 

any point within Region II can be determined as 

c4>(x,y,z) = j  y ¥v (_)-^^,0^( 
di>y4wr 

dA      (4) 

where r = \{x — ^)2 + (y — rj)2 + (z — C)2]1^2 • As before, c is unity for points 

inside the region and is equal to 1/2 on smooth boundaries. 

To proceed with numerical calculation, surfaces of the boundaries Ti 

through I\j are divided into N\ to N4 discrete segments with constant el- 

ements. 

For the case that c=l/2, Eq.(4) is readily expressed as 

w = mm (5) 
where {4>} and {cf>} are the potential function and its normal derivative on the 

boundaries Ti through 1^. [K] is a coefficient matrix related to the geometry 

of the boundaries. 

The boundary conditions required for the case under consideration are 

summarized as follows: 

(i) The free surface condition: 

For constant air pressure, the kinematic boundary condition for the free 

water surface is expressed as: 
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(6) 

(ii) Boundary condition on impermeable sea bed: 

For an impermeable sea floor, the flow is zero in the normal direction: 

? = 0 (7) 

(iii) Boundary condition on the pseudo-boundary at open sea: 

The requirement of continuity for mass and energy fluxes between Region 

I and Region II at the pseudo-boundary Fi leads to the expression: 

l>o(t,v,z) = 4>(£,,n,z) 
(8) 

(9) 

(iv) Boundary condition on a quay or breakwater 

Assume the boundaries of the quays or breakwaters T$ are impermeable 

and have an arbitrary coefficient of reflection Kr. Since waves are reflected 

only partially, based on the theory of energy conservation,these construc- 

tions can therefore be treated, conceptually, as having a energy dissipating 

coefficient a indicated by Chou and Lin(1989) reads 

a = \Jl-Kr
2 (10) 

The boundary condition on T3 can be expressed conveniently as: 

^,>7,C) = tW«,'7,0 (11) 

Substitution of Eqs.(6),(8),(9) and (11) into Eq.(5), a little algebra lead to 

[Ku -CRK*Q\ 

K3x 

^I<22  ~ I 

°—K "•32 

ikaKis 

ikaKu 

ikaK33 — I 

R[F° -K*T] 
0 
0 

-o (12) 

where C = k/(N(, sinhkh), {F0} and {F } are the potential function and its 

normal derivative of the incident wave, [R] and [Q] are coefficient matrices 

given by Chou and Han (1993). 
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By solving the above equation, the potential functions on boundaries 1^ 

are obtained. The wave height ratio,Kd, defined as the ratio of the wave 

height in Region II to the incident wave height, can be calculated from 

Kd=\fa\ (13) 

2.2 Irregular Wave 

The approach for the oscillations of undirectional irregular waves in the 

harbour of arbitrary shape with dissipating quays is based on the spectral 

resolution method (Nagai (1972)), where each component wave is known. 

Assuming that incident component waves are small amplitude waves, the 

oscillations of these regular waves can be obtained by numerical method in 

section 2.1 ,then the water surface oscillations for irregular waves can be 

obtained through linear superposition method. 

In this paper, the Bretschneider spectrum (Bretschneider(1968)) was used. 

In order to simplify the process of numerical analysis, the incident spectrum 

was transformed into dimensionless type as follows: 

5*(/*) = «r~5 expH&r-4)] (i4) 

a = 6/4 

b = 0.675/0.94 = 1.0288 

To obtain the component waves, the dimensionless spectrum is discretized 

into m parts, each with the same energy AE (each part under the spec- 

trum having the same area), then, the representive frequencies fcn* of each 

component wave can be written as 

f   * = Jen     — «-/h/2M^]|-er/ fi^)) (15) 

where a and b are the coefficients of the dimensionless Bretschneider spec- 

trum; n=l,2,....m; and erf(x) is the error function given as 

Jo 
erf{x) = I    e-^~^d2 (16) 
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2.3 Wave height ratio KD and period ratio KT due to irregular waves 

From section 2.1, the wave height ratio KA due to regular component 

waves can be obtained, then the wave height ratio KD and period ratio KT 

due to irregular waves can be obtained by following equations. 

KD =•£&-= 4.0Jr S*D(f*)df* 
(#1/3 J0 V"'0 

KT = 
_      ^1/3 

sD(fl 

f0°° S*D(f*)df* 

C f*2sD{f*w 
•K}S*(f) 

(17) 

(18) 

(19) 

where SD (/*) is the spectrum in the harbour induced by the incident spec- 

trum S*(f*) , subscript "o" means the values in off-shore. 

3. DETERMINATION OF THE REFLECTION COEFFICIENT 

To proceed with the analysis numerically, the energy dissipation coefficient 

a in Eq.(ll) must be determined. In other words,the reflection coefficient of 

the dissipating structure in Eq.(lO) must be found empirically. This was done 

in a 2-D wave flume, shown schematically in Fig.2. The reflection coefficients 

can be obtained as shown in Fig.3, where the dotted curve shows the best 

fit of the experimental data in a least squares sense. Reflection coefficients 

for different frequencies determined from this empirical function were used 

in the subsequent calculations. 
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4. EXAMPLE 

Tible 1. Cases of ware basin 

SI S2 S3 renrks 

cat*  I X X X X:iaperaeable quay 

Oiditsipatiag quiy cast II o o O 

case Id X o X 

cat* IV o X o 

o'—-X 

A 

Fig. 4 Definition sketch for 
square harbour 

Fig. 5 Layout and topography 

of Patosu fishery harbour 

Calculations were first carried out for a square basin with a width equal 

to 10h,(h is the water depth of the open sea) and an opening width b=5h 

at the center of the basin, as shown in Fig.4. The same dissipating quays 

as those in the two-dimensional wave flume experiment were assumed and 

uniform water depths in both the Regions I and II. 

In the numerical analysis, the surfaces of the boundaries are divided 

into 1056 discrete areas with constant element (7Vi=104 ,^2=720 ,Nz=52 

, JV4=180,M=2). Waves propagating perpendicular toward the harbor en- 

trance were used. Distributions of wave heights for dimensionless frequencies 

al/3h/g = 1.206 (Ii/3 = 1.0 second) was determined. Table 1 shows the 

conditions used for the calculation. 

Computations were also performed for an example of the Patosu fishery 

harbour built 3 years ago in the northern part of Taiwan. The layout and 

topography of the harbour are given in Fig.5. Quays and breakwaters of this 

fishery harbour are dissipating structures (PERFORCELL), whose reflection 

coefficient is estimated approximately at 0.75, the energy dissipation coeffi- 

cient being 0.661. In the numerical computation, water depth larger than 40 
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m was regarded as constant, and the boundary surfaces were divided into 1988 

discrete segments with constant elements (iVi =152,iV2 =1329,N3=176,iV4 =331 

and M=2). Distributions of wave heights were calculated for incident waves 

propagating from 23.5° north-northeast (u> = 66.5°) toward the harbour en- 

trance with dimensionless frequencies of a^/3h/g — 1.611 (Ti/3 = 1.0 second). 

In the numerical analysis, the dimensionless spectrum is discretized into 

12 segments(m=12), then the representive frequency /*„ of each component 

wave can be calculated by Eq.15, and the wave height ratio KD and period 

ratio KT can be obtained by Eq.17 to 18. 

5. LABORATORY EXPERIMENT 

Experiments were carried out in a 3-D wave basin. The wave basin is 

30 m long, 24 m wide and 1 m deep. The programmable wave generator 

is capable of generating regular and irregular waves. Water depth was kept 

to be 0.3m throughout the experiments. Water surface displacements were 

measured with capacitance-type wave gauges. 

6. RESULTS AND DISCUSSION 

Fig.6 shows the wave height distributions for irregular waves obtained 

both by the present numerical method and experiments for case I and case II 

of square basin with significant wave period (Ti/3)o =1.0 second. From these 

figures, a general increase of wave height in case I due to reflection effects and 

decrease of that in case II due to the effects of disposing dissipating quays 

were found. The tendencies of wave height distributions predicted by the 

present numerical model are confirned by the experiments. 

Fig.7 shows the period distributions KT for irregular waves obtained both 

by the present numerical method and experiments for case I and case II of 

square basin with significant wave period (Ti/3)o =1.0 second. The spatial 

variation of KT is increasing in the range of 20% in the square basin, and 

the spatial similarity between numerical solutions and experimental results 

are reasonable. 
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Fig.8 shows the comparision of wave height distributions in square basin by 

numerical model to regular waves with period T=1.0 second and to irregular 

waves with significant period (Ti/3)o =1.0 second for case I to IV respectively. 

For both regular and irregular waves, the oscillations in case II to IV is 

apparently reduced because of disposing dissipating quays. Compared the 

difference of wave height distributions induced by regular and irregular waves, 

it can be found that the wave height distributions induced by irregular waves 

are, in general, more stable than those induced by regular waves. The wave 

motions by irregular waves generally consist with those existing in nature 

sea-water surface. 

Fig. 9 shows the distribution of wave height KD for irregular wave obtained 

by the numerical method and experiments for the Patosu fishery harbour with 

a = 0.661, wave direction of 23.5° north-northeast and wave period (Ti/3)o 

=1.0 second. Compared the difference of these figures with Fig.10 , the same 

phonemona in square basin metioned above that the wave height distributions 

induced by irregular waves are more stable than those induced by regular 

waves was found. The spatial similarity between numerical solutions and 

experimental results are reasonable too. 

Fig.10 shows the period distributions KT for irregular waves obtained 

both by the present numerical method and experiments for the Patosu fish- 

ery harbour with significant wave period (Ti/3)o =1.0 second. The spatial 

variation of KT is increasing in the range of 20% in the numerical results. 

Because the wave heights in the inner region of the harbour are too small to 

measured, the significant wave period in that region can not be obtained in 

the laboratory. 

7.CONCLUSION 

The effects of dissipative quays and/or breakwaters are modeled using a 

coefficient for energy dissipation in the boundary condition. Comparisons of 

calculated and measured resluts for both a square basin and a real harbour are 

shown. From the examples presented above show that the spatial similarity 

between numerical solutions and experimental results are reasonable, it is 

conjectured that, given the correct coefficient, the most suitable position for 

disspating quays in a harbour could be estimated by the present method. 
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Fig.8 Wave height distributions for regular wave (T=1.0 sec.) 

and irregular wave (Ti/3=1.0 sec.) 
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\o ^-— JLco  » 

(b)     HUM.   SOLUTION 

Fig.9 Wave height distributions Ko  for irregular wave 

in Patosu fishery harbour,(r1/3=1.0 sec.) 
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SOLUTION 

Fig. 10 Wave period distributions K? for irregular wave 

in Patosu fishery harbour,(7i/3=1.0 sec.) 
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Though only the Bretschneider spectrum as incident wave spectrum was 

used in this paper, other spectrums such as Pierson Moskowitz spectrum or 

JONSWAP spectrum can be applied by this method also. 

It is thus concluded that the present numerical method can be used to 

study problems related with harbour oscillations. 
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