
CHAPTER 204 

Mass Transport and Orbital Velocities with 
LAGRANGEian Frame of Reference 

Stefan Woltering1 and Karl-Friedrich Daemrich2 

Abstract 

Measurements of surface elevations and horizontal orbital velocities in regular 
waves and two component wave groups were performed to prove the experimental 
validity of periodic wave theories for regular waves, and empirical engineering meth- 
ods for calculations in irregular waves. Besides the traditional wave theories a 
LAGRANGEian approach was introduced. With this LAGRANGEian method for 
waves of finite height, based on the geometry of orbital paths given by STOKES wave 
theories, it is possible to extend the region of validity of STOKES theories over a 
wider range of wave parameter. The use of a superposition method with 
LAGRANGEian approach and the application to two component wave groups, results 
in the appearance of non linear interaction components in surface elevations and hori- 
zontal orbital velocities, which are in fair agreement as well with a 2nd order approach 
for irregular wave surface elevation as with the measurements of surface elevation and 
horizontal orbital velocities. 

Introduction 

Orbital velocities and mass transport velocities are important e.g. for the prediction 
of forces on coastal structures and the verification of transport models in the near 
shore region. Traditional wave theories (e.g. STOKES, DSFT-Dean Stream Function 
Theory etc.) and empirical calculation methods (e.g. modified potential theories) are 
used for theoretical treatment of regular waves and as a basis for simulation methods 
for irregular waves (e.g. linear superposition). A point of controversy is the selection 
of calculation methods to give best results and how to interpret mass transport ve- 
locity measurements, especially in wave flumes. Measurements of orbital velocities and 
mass transport velocities in a wave flume are compared with DSFT and calculations 
based on STOKES wave theories in different ways of interpretation. A 
LAGRANGEian approach is introduced by the authors. 

l'2 both University Hannover, SFB 205, Franzius Institut, Nienburger StraBe 4, 
30167 Hannover, Germany. 
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Experimental Set-up 

The research program was carried out in the Large Wave Flume (GroBer Wel- 
lenkanal - GWK, University Hannover / Technical University Braunschweig - Length 
324m, width 5m, water depth up to 5m) and the Wave Flume "Schneiderberg" (WKS - 
Length 120m, width 2m, water depth up to 1,2m) of the Franzius-Institute / University 
Hannover. The investigations were concentrated on waves in intermediate water 
depth. The measurements were taken with electromagnetic type velocity probes 
located in fixed positions below the still water level, and also with a velocity probe 
fixed to a Movable Instrument Carriage (MIC). The MIC follows the water surface 
with the velocity probe in a constant position below the moving surface. The waves 
were generated with a piston type wave maker using modified higher order control 
signals to reduce free parasitic wave components. 

The LAGRANGEian approach 

For simplicity the introduced LAGRANGEian approach is explained using the 
linear description of orbital paths. Figure 1 shows a principal sketch for the 
LAGRANGEian approach surface elevation. Figure 2 gives a detailed information 
concerning wave kinematics calculation for a fixed probe position below the deepest 
wave trough. During the calculation process the centre of the orbital path of the re- 
spective water particle will be determined for every time step At by linear iteration, 
using the formulas for T) and £ given by the respective order of the theory (Equations 
1, 2 for linear wave theory). 

rt .\ H  cosh 2n(z0 + d)/L    . ( x0    t\ 
Q(x0,Zo,t) = — Sin 2K   —-— C1) 

2       sinh IndIL \L   T 

H sinh 2n(z0+d)/L _ n_[ x0    t 
ri(x0,z0,t)= 

v °     ' cos In\~—\ (2) 
2       sinh IndIL \L   T w 

where £,(x,t) = horizontal location of water particle; 
r\(x,t) = vertical location of water particle; L = wave length; 
H = wave height; x0,z0 = still water position; T = wave period 

The surface elevation results from the particle motion of the most upper water 
particles. The LAGRANGEian surface elevation for first order particle motion and 
deep water conditions contains higher harmonic components, which are nearly in the 
same magnitude, as calculated with STOKES higher order theories. For more shal- 
lower water STOKES higher order descriptions of orbital paths are used for the 
LAGRANGEian method. The calculation procedure is the same as outlined before. As 
the surface elevation results directly from the water particle movement, the kinematic 
free surface boundary condition is satisfied. 
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Figure 1. Principle sketch of LAGRANGEian surface elevation 
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Figure 2. Principle sketch of LAGRANGEian method for the 
calculation of orbital velocities 
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The orbital velocity is calculated for the actual position of a water particle along its 
orbital path at the location of the probe for each time step. The velocity below wave 
crest results from the smaller orbit below the velocity probe, the velocity below wave 
trough relates to the wider orbital path above the probe position, and in the same way 
for all time steps between crest and trough. Figure 3 shows the time series of hori- 
zontal orbital velocity for a theoretical calculated example of 1st order 
LAGRANGEian approach in comparison to linear wave theory. Figure 4 is the ampli- 
tude spectrum for the difference curve of the both methods. 
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Figure 3. Time series of horizontal orbital velocity 
(T=1.13s, H=0.35m, d=1.00m, z=-0.20m) 
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Figure 4. Fourier transformation of difference time series 
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The Fourier analysis of the theoretical time-series (e.g. motion on orbital paths ac- 
cording to linear theory) results in higher harmonic components and shows a slight 
decrease of the basic component. In addition a negative dc-value (mean velocity) for 
the horizontal orbital velocity appears. This negative mean velocity is not to be inter- 
preted as a constant velocity in the opposite direction of wave travel. The 
LAGRANGEian time series has to be corrected to zero mean, which is in fact the 
superposition of the mass transport velocity. This again gives a clear argument, that 
linear wave theory already contains mass transport. 

The LAGRANGEian approach can be transferred to irregular waves, by using the 
superposition method for the particle motion on orbital paths of the linear components 
of a spectrum, however, effects of mass transport and back flow have to be deter- 
mined separately. Figure 5 shows an amplitude spectrum of a wave group for a theo- 
retical calculated deep water example. 
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Figure 5. Amplitude spectrum of surface elevation 
1st order LAGRANGEian approach - 2nd order MANSARD et al. (1986) 

(fi=1.01Hz, f2= 1.09Hz, Hi=H2=0.1m, d=1.00m) 

The components of the wave group spectrum according to 2nd order are in the 
same magnitude for both methods, and for the 1 st order LAGRANGEian approach in 
addition components higher than 2nd order are clearly visible. This non-linear inter- 
actions are automatically appearing using the described superposition method for the 
orbital motion of the two linear components of the surface elevation spectrum. The 
formulation of r\ and £ for the two linear components is simply added during the 
iteration procedure. 
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Figure 6 shows a comparison of super harmonics by the LAGRANGEian approach 
with the transfer function G+nn*h for the 2nd order frequencies of the linear com- 
ponents as given by MANSARD et al. (1986). In deep water a 1st order 
LAGRANGEian approach gives same results as 2nd order theory. For more shallower 
water a 2nd order description of particle motion is needed for the LAGRANGEian 
approach to achieve fair agreement with MANSARD'S approach. 

~ MANSARD et al.  (1986) 

"•• 1st order LAGRANGEian 

"*" 2nd order LAGRANGEian 

Figure 6. Comparison of 2nd order MANSARD et al. (1986) 
with LAGRANGEian approach for fn+fn and fm+fm 

Figure 7 shows the transfer function G+nm*h for the higher harmonic component 
at frequency fm+fn- 
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Figure 7. Comparison of 2nd order MANSARD et al. (1986) 
with LAGRANGEian approach for fm+fn 
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The value of the transfer function depends on the relative spacing of the linear compo- 
nents in frequency domain fn /fm. For deep water the 1st order LAGRANGEian 
approach shows fair agreement with the 2nd order theory of MANSARD et al. (1986). 
In more shallower water the LAGRANGEian approach of higher order is not able to 
calculate the fm+fn higher harmonic amplitude in that order of magnitude, however, 
differences between LAGRANGEian approach and Mansard's approach are not to big 
for intermediate water depth. In addition it has not yet been defined clearly to what 
extend a 2nd order theory is suitable to shallower water conditions. As shown in Fig. 5 
LAGRANGEian approach results are of higher than 2nd order. 

Comparison with measurements 

Figure 8 shows measured mean velocities and mass transport velocities for one 
example of regular waves plotted as depth distribution. For the fixed measurements a 
fair agreement with the EULERian backflow considered as constant over depth can be 
seen. The analysis is done in a time window without reflecting waves. The mean 
velocities from the movable probe can be interpreted neither as backflow nor as real 
mass transport velocity according to STOKES 2nd order theory. Only by a 
LAGRANGEian analysis of the data, a fair agreement of the data with real mass trans- 
port velocity, superposed by a backflow to a zero-net mass transport in the closed 
wave channel, can be achieved. 
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Figure 8. Measured and calculated mass transport velocity and backflow 
(T=3.20s, H= 1.20m, d=4.00m) 

The constant EULERian backflow is considered in all theoretical calculations. It is 
known, that the constant profile of the backflow is only an approximate value, which 
neglects any influence of viscosity in the boundary layer. The analysis of the data 
shows that variations of the backflow profile due to the influence of viscosity appear, 
however, outside the time window chosen for velocity analysis. 
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Figure 9 shows measured surface elevations in comparison to 5th order DSFT and 
3rd order LAGRANGEian approach for a wave in intermediate water depth with 
d/L = 0.1. Small differences are appearing in the crest region, which can be related 
mainly to a not quite perfect wave generation. It can be assumed, that a certain 
amount of free wave is superposed on the stable wave, however, both theories show a 
good overall agreement with the measured time series. 
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Figure 9. Comparison of measured and calculated surface elevation 
(T=2.56s, H=0.30m, d= 1.00m) 

Figure 10 shows comparison of measured and calculated horizontal orbital veloci- 
ties below the wave crest for the above shown wave case. 
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Figure 10. Horizontal orbital velocities below the wave crest 
(T=2.56s, H=0.30m, d= 1.00m) 

1st order LAGRANGEian approach and 1st order STOKES theory show a clear 
underestimation of the measured velocities near the wave crest. Velocities below the 
deepest wave trough are well predicted using 1st order LAGRANGEian approach. As 
outlined before, the surface elevation was in fair agreement with 3rd order 
LAGRANGEian approach and 5th order DSFT, and as the surface elevation is a result 
of the particle movement on their respective orbits, it is consequent to use this higher 
order theories also for velocity prediction. Comparison of the data with this ap- 
proaches show good agreement. 2nd and 3rd order STOKES theory used in 
EULERian way tend to overpredict the near crest velocities slightly. 

The same tendencies also hold for the horizontal orbital velocity below the wave 
trough, as can be seen in Figure 11. The 3rd order LAGRANGEian approach and the 
5th order DSFT fit the measurements, 2nd and 3rd order STOKES theory calculate 
too high negative velocities, as well as 1st order LAGRANGEian approach and linear 
wave theory. 
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Figure 11. Horizontal orbital velocities below the wave trough 
(T=2,56s. H=0.30m, d= 1.00m) 

Results of measurements of horizontal orbital velocities in wave groups and com- 
parison with various engineering methods and with LAGRANGEian approach are 
shown in Figures 12 to 15. Two wave groups with wave parameter listed in table 1 are 
considered for this paper. 

fm 
[Hz] 

fn 
[Hz] 

Hm 
[m] 

Hn 
[m] 

d 
M 

group 1 0,78 0,86 0,07 0,07 1,00 
group 2 0,78 0,86 0,12 0,03 1,00 

Table 1. Wave parameter of the wave groups 

Figure 12 shows a comparison of measured horizontal orbital velocities with the 
theory as scatter plots for wave group 1. The measurement is done below the deepest 
wave trough at z =-0.10m with a fixed velocity probe. The Linear Transfer Function 
Method (LTFM) shows the known tendency of overprediction of the crest velocities. 
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WHEELER's stretching method gives slightly better results below the wave crest, but 
there is a small tendency of underprediction of the velocities below the wave troughs. 
The complementary method shows similar tendencies as the LTFM. The stretching 
after DEAN and LO (1986) under predicts the crest velocities as well as the velocities 
below the wave troughs. DONELAN's superposition method (1992) shows good 
results, and finally a 2nd order LAGRANGEian approach fits the measurement best. 
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Figure 12. Comparison of measured and calculated horizontal orbital velocity 
at z=-0.10m for wave group 1 
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The tendencies outlined before also hold for wave group 2 in figure 13, however, 
there are stronger deviations in the results of LTFM and DONELAN's superposition 
method. 
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Figure 13. Comparison of measured and calculated horizontal orbital velocity 
at z=-0,10m for wave group 2 

The reason for the mentioned tendencies becomes more clear looking to the com- 
parison of the calculated and measured velocity components in frequency domain. 
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Figure 14 gives the measured and calculated values according to 2nd order theory for 
wave group 1. LTFM calculates too high basic components of the horizontal orbital 
velocity as well as too high 2nd order super harmonics. WHEELER's stretching coun- 
teracts this concerning the linear components, the higher harmonic components, how- 
ever, are over predicted. DONELAN's superposition method calculates too high linear 
velocity components, the super harmonics are better predicted than by the two before 
mentioned methods. Finally, the 2nd order LAGRANGEian approach gives fairly good 
results concerning the linear components and also concerning the higher harmonic 
components of the horizontal velocity, which in this example are relatively small. For 
the velocity at frequency component fn - fm it can be stated, that, except DONELAN's 
superposition method, all methods calculate the velocity in the same magnitude and in 
disagreement with the measurement. This will not be discussed in detail, since this is 
state the of actual research work. It is assumed, that the misinterpretation of the bound 
long velocity component belongs to interaction of mass transport velocity and back- 
flow in the wave channel and the resulting free long wave. The analysis of the data 
shows, that the deviations between the theoretically calculated and measured long 
wave velocity is not the reason for the before mentioned tendencies. 
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Figure 14. Amplitude spectrum of measured and calculated horizontal orbital velocity 
according to 2nd order for wave group 1, z=-0.10m 

A main reason for the failure of the engineering methods in prediction of orbital 
velocities in irregular waves is the misinterpretation of the higher harmonic com- 
ponents. In figure 15 measured and calculated profiles of the horizontal orbital ve- 
locity below the highest wave crest and the deepest wave trough are plotted for both 
wave groups. The overprediction of the higher order velocity components using the 
higher order components of the surface elevation as linear input for the LTFM, in- 
creases rapidly above still water level. Complementary method and also DONELAN's 
superposition method counteracts this tendency, but clear deviations are visible. Only 
LAGRANGEian approach, which uses the basic components of the surface elevation 
as input, fits the measurement near the surface. The opposite tendency of underpre- 
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diction of the trough velocities is for all methods the same. LAGRANGEian approach 
is in fair agreement with the measured values. 

« Measurement 

— 2nd order LAGRANGEian 

— Complementary Method 

+ LTFM 

* DONELAN superposition 

® Measurement 

— 2nd order LAGRANGEian 

— Complementary Method 

+ LTFM 

* DONELAN superposition 

0 

B [m/s] 

Figure 15. Measured and calculated horizontal orbital velocities below the highest 
wave crest and below the deepest wave trough (A : wave group 1 | B : wave group 2) 

Conclusions 

Measurements of surface elevations and horizontal orbital velocities in regular 
waves and in two component wave groups are compared with various calculation 
methods. A LAGRANGEian approach, which bases on the geometry of orbital paths 
given by STOKES 1st, 2nd and 3rd order theory was introduced by the authors. 
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Following conclusions can be achieved after presentation and discussion of the results: 

- The periodic wave theories of the respective order show good agreement with 
measured regular wave kinematics as well as with regular wave surface elevations. 

- The introduced LAGRANGEian approach gives good results concerning surface 
elevations and orbital velocities and needs a lower order for calculation than 
other periodic wave theories. 

- Using LAGRANGEian approach on the basis of STOKES wave theories, the 
application range of the STOKES theory can be extended over a wider range of 
wave parameter. 

- Stretching techniques and engineering methods on the basis of linear wave theory 
seem to be not the right physical tool for the calculation of wave kinematics in 
irregular waves. The main reason for the failure of these methods is the linear 
treatment of the super harmonics of the surface elevation. 

- Using a superposition method with the LAGRANGEian approach, nonlinearities 
are automatically appearing. Especially in deep water a 1st order LAGRANGEian 
approach allows to calculate higher order irregular wave kinematics as well as 
higher order irregular surface elevations in a mathematical and physical conclusive 
way. 
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