
CHAPTER 185 

A numerical simulation of beach evolution based on 
a nonlinear dispersive wave-current model 

Shinji Sato1 and Michael B. Kabiling 

ABSTRACT 

A numerical wave model based on the Boussinesq equation was extended to the computation 
of two-dimensional wave-current field including diffraction, refraction and wave breaking. The 
energy dissipation due to wave breaking was modeled by a momentum mixing term using eddy 
viscosity. Beach deformation was estimated based on the wave-current field simulated in the 
nearshore region. Energetics-based equations were used to estimate the total sediment transport in the 
cross-shore and longshore directions. The model applicability was confirmed with laboratory 
experiments. 

1.   INTRODUCTION 

In the nearshore region, where water depths are shallow and amplitudes are relatively large, 
waves are highly nonlinear characterized by asymmetric orbital motion of the water particle. This 
nonlinearity becomes increasingly dominant with decreasing water depth. Hence, it is expected that 
numerical models based on the linear wave theory will not provide an accurate simulation of the 
nearshore wave phenomenon. Moreover, since the nearshore current is caused by the gradient of 
nonlinear radiation stress, it cannot be estimated simultaneously with the wave variables in linear 
wave models. 

The Boussinesq equation can be considered as one of the valid nonlinear dispersive wave 
theories for finite amplitude wave transformation. The nearshore currents generated by the wave 
action can also be determined from nonlinear wave computation using the Boussinesq equations. The 
performance of the Boussinesq equations in 1-D wave transformation was evaluated by Madsen and 
Warren (1984)[10], Abbott et al. (1984)[1], and McCowan (1987)[13]. It was noted that Boussinesq 
equations with various forms of the dispersion terms generally performed well in the shallow water 
region. Madsen et al. (1991)[11] also presented a method of extending the validity of the Boussinesq 
equations to deeper water. The use of the Boussinesq equations was extended to the surf zone by 
more recent researches by Schaffer et al. (1992)[16], Karambas et al. (1992)[8] and Sato et al. 
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(1992)[15], It was shown that with the use of an appropriate additional term expressing the 
momentum mixing due to wave breaking, the Boussinesq equations give reasonable results even 
inside the surf zone. However, most of the previous works in this area have been confined to 1-D 
wave modeling. 

In this study, the nonlinear dispersive wave model based on the Boussinesq equation is 
extended for wave transformation in two horizontal dimensions. A new breaking criterion using the 
ratio of the water particle velocity at the crest surface to the wave celerity for three-dimensional wave 
field is presented. A momentum mixing term is introduced to simulate the energy dissipation due to 
wave breaking and thus extend the use of the Boussinesq equations into the surf zone. These two 
factors extended the wave-current model application into the surf zone. A beach run-up sub-model 
similar to that used by Iwasaki and Mano (1979)[5] was added to extend the model application up to 
the swash zone. It also allowed for the estimation of the beach deformation beyond the initial 
shoreline. Results from the numerical computations are compared with previous theoretical works 
and with existing laboratory data. 

2.     WAVE AND CURRENT MODELING 

2.1.    Governing equations 

The Boussinesq equations for 2-D incompressible flow applicable for a horizontal or mildly 
sloping bottom are used as the basis for the governing equations. Additional momentum mixing terms 
MDx and M^ were added into the Boussinesq equations to simulate the energy dissipation due to 

wave breaking inside the surf zone. Another term was also added to include the effect of the bottom 
friction. The governing equations thus read: 
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where as shown in Fig. 1, Qx(x,y,t) = u^d and Qy{x,y,t) = U,d are the depth-integrated flow rates in 

the x-axis and y-axis directions respectively, ZLc = ux(x,y,t) and Uy =uf(x,y,t) are the depth- 

averaged water particle velocities in the x-axis and y-axis directions respectively, d(=h+ tf) is the 
total water depth, h = h(x,y) is the still water depth, T]= t]{x, y,t) is the water surface elevation, g is 
the acceleration due to gravity, /„ is the bottom friction coefficient, and MDx and MDy are the 

momentum correction terms in the x-axis and y-axis directions respectively. 

An Alternating Direction Implicit (ADI) finite difference scheme with a double sweep 
algorithm on a staggered rectangular grid region was used in the wave-current computations. In all 
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Figure 1   Definition sketch of a typical 
wave profile. 
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Figure 2  Wave shoaling under 1-D non-breaking 

wave computations. 

computations, monochromatic first-order cnoidal waves were generated at the incident boundary. The 
incident boundary was set as an absorbing boundary which allowed the reflected waves to pass 
through freely. An absorbing boundary was defined by solving the radiation problem along this 
boundary. The computation started from still water and continued until both wave and current fields 
reached equilibrium state. The time required to reach the equilibrium was about 40 wave periods in 
the present computations. 

2.2. Wave shoaling 

To verify the numerical scheme, 1-D non-breaking wave computations (MDx = MDy = 0) were 

performed on a rectangular region where the onshore boundary was set as an absorbing boundary 
which allowed the non-breaking waves to pass through freely. The still water depths at the incident 
and onshore boundaries were set to 0.127^ and to just below the wave breaking limit respectively. 
Numerical computations for bottom slope tan/?= 1/30 to 1/20 were made with incident wave 
condition Ho/L0 =0.0064 where H0 and Z<, are the deep water wave height and wavelength 
respectively. 

Figure 2 shows the ratio of the wave height to the deep water wave height H/H, for 
computations with and without the dispersion terms. The small undulations were caused by small 
amounts of wave reflection arising from the bottom slope as well as the onshore boundary. The 
values of H/H0 from nonlinear non-dispersive wave computations overestimate wave shoaling. In 
contrast, those from nonlinear dispersive wave computations adhere closely to the theoretical curve 
presented by Shuto (1974)[17]. This indicates the importance of including the dispersion terms in 
nonlinear wave computations. These results confirmed the capability of the Boussinesq wave model 
for wave shoaling up to the breaking limit. 

2.3. Two-dimensional wave breaking criterion 

In order to establish an appropriate 2-D wave breaking criterion for nonlinear dispersive 
waves in a multi-directional wave field, the ratio of the water particle horizontal velocity at the 
surface of wave crest u,mia to the wave celerity c at the breaking point was investigated. The aim of 
the investigation is to determine the critical ratio at incipient wave breaking. 

The wave celerity c was taken to be equal to the celerity in the direction of the maximum 
horizontal water particle velocity usma which occurs at the crest surface. The ratio umia/c was thus 
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estimated by: 

_2=- = J L (4) 

c a 

where k is the wave number vector and a is the angular frequency. The wave number k was 
determined from the gradient of the phase lag <J>. The phase lag was estimated from the Fourier 
analysis of the computed water surface elevation fj{t). A quadratic vertical distribution of the 
horizontal velocity was assumed. Based on the investigation, the critical values of usmaxjc was found 
to be in the range 0.4 < umax/c < 0.70 depending on the bottom slope and incident wave condition. 

2.4. Energy dissipation due to wave breaking 

Significant amount of energy is dissipated by the turbulence generated by the breaking of 
waves. Several momentum correction models have been proposed so far to simulate wave damping in 
the surf zone (eg.,Karambas and Koutitas, 1992, Schaffer et ai, 1992). Watanabe and Dibajnia 
(1988)[21] presented a numerical wave model based on the linear wave theory. It computes wave 
transformation by using a set of time-dependent mass and momentum conservation equations that are 
equivalent to the mild-slope equations. The functional form of MD that was used in the wave 
transformation computations from this linear wave model for which results well agree with laboratory 
data is: 

M„ =-fB-Q = -aB tan ft* *• ' ^   G^ 
UKQ.-Q.. ~ (5) 

where fp is an energy dissipation coefficient, Q is the discharge per unit width, aa is a coefficient 

which is 2.5 inside the surf zone and zero elsewhere, tan /} is the bottom slope, d is the mean total 

depth, Q is the amplitude of discharge per unit width, Q, is the wave induced flow rate inside the surf 
zone, and Q. is the flow rate amplitude of recovered waves. Based on the experimental data of Isobe 
(1986)[4] and Maruyama and Shimizu (1986)[12] respectively, Q, and Qr can be estimated as: 

0, = 0.4 (057 + 5.3 tan /?) Jgd* (6a) 

Qr = 0.135 -JgcP (6b) 

Wave breaking however, involves strong turbulence and momentum mixing particularly at the 
front face of the wave. The energy dissipation is a direct result of the diffusion of momentum in the 
surf zone. It is therefore necessary to use a more appropriate form of MD that can better describe 
these phenomena. Sato et at (1992)[15] presented an energy dissipation term that was proportional to 
the diffusion of the momentum. The following formulation of MDx and MD}, by Sato et al. (1992) in 

terms of an eddy viscosity  ^ was used to describe the momentum exchange due to turbulence. 

MDl=v,\^r+~r\ (7a) 

with        v = vR + vL (7b) 

dx2       dy 
f 

M    = v. 
r^Qy    d
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The functional form of i£ was analogically deduced from Eq. (5). By assuming sinusoidally varying 
Q, the form of \fe for long waves becomes: 

aD&d\mp fg j Q-Q, 

d     vUJe,-G, (8) 
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The form of i£ in Eq. (8) is consistent 
with Eq. (5). Sato et al. (1992) confirmed that 
the momentum mixing model given by Eq. (8) 
is capable of simulating the tilting of the wave 
profile as the wave propagates into shallow 
water. 

0.05 0.1 0 

Equation (8) is used only in the surf zone 
and the eddy viscosity % is zero outside the 
surf zone. However, this will result in the 
appearance of enormously large velocities at 
sharp corners of structures located outside the 
surf zone. These large velocities occur in places 
where there is a sudden difference in wave 
height and mean water level. They are likely to 
occur in sharp corners like at the tip of a 
detached  breakwater.   To  avoid   these  large 

velocities, additional viscosity is introduced. An appropriate form for this additional viscosity   l£ is 
found to be similar to that proposed by Longuet-Higgins (1970)[9] and is given by 

yL= 0.016 /tan fljgd (9) 

where / is the horizontal distance from the shoreline. The magnitude of  if, is set to be much smaller 
than  i£ so as not to cause additional wave damping. 

Figure 3   Comparison of wave height and mean 
water surface. 

2.5.    One-dimensional wave transformation 

Data from a series of 1-D laboratory experiments conducted in a wave flume by Sato et al. 
(1988)[14] were used to verify the wave transformation capability of the present model in the surf 
zone. In one wave flume experiment, the instantaneous surface elevation and the near-bottom velocity 
at several points were measured along a line in the direction of the wave propagation. The bottom 
slope was tary?= 1/20, the still water depth at the incident boundary l\ = 40 cm, the monochromatic 
incident wave period T = 1.18 s and the incident wave height H0 = 8.76 cm. 

The computed non-breaking wave heights as well as the mean water level Ij well agree with 
the measurements as shown in Fig. 3. With the inclusion of the momentum mixing terms into the 
Boussinesq equations, the computed H/H, in the surf zone also agree well with the measured H/H„. 
From the profile of 7jjHo, it can be seen that the model is capable of simulating the wave set-down 
before wave breaking and the subsequent wave set-up after wave breaking. 

The computed instantaneous water surface elevation r^tJT) and near-bottom velocity ii^it/T) 
were compared with the measurements. Figures 4(a) and 4(b) show rj and 14, respectively at two 
measuring points located before and after wave breaking. In these figures, t denotes the time within 
one wave period and x is the horizontal distance from the still water shoreline. 

The best agreement between computation and measurement seems to occur before wave 
breaking. This is expected since the Boussinesq theory has been proven to be a valid nonlinear wave 
theory for non-breaking water waves. Inside the surf zone, there is a good agreement of the computed 
7} with the data. The computed near-bottom velocity Ub also agrees fairly with the data. The slight 

deterioration in model accuracy in the surf zone may be due to three reasons. First, the Boussinesq 
theory may not be valid for such strongly nonlinear dispersive waves where wave nonlinearity and 
wave dispersion do not have the same order of magnitude. Second, strong turbulent mixing generated 
by wave breaking cannot be well simulated by the simple eddy viscosity approach that uses a constant 
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Figure 4   Time history of water surface elevation rjit/T) and near-bottom velocity Uf,(t/T). 

eddy viscosity value for one wave period. Third, the assumption of a nearly horizontal slope may 
have caused this inaccuracy. In spite of these, the model can be regarded to be applicable in the 
region outside the surf zone and fairly accurate within the surf zone. 

3.   BEACH DEFORMATION MODELING 

3.1.    Total sediment transport equations 
Two sediment transport equations were used by Kabiling and Sato (1993)[7] in modeling 3-D 

beach deformation. The first of which was used to simulate the sediment transport due to the current. 
It can be expected therefore that cross-shore sediment transport will not be simulated. On the other 
hand, the second model based on the Bailard (1981)[2] equations, was seen to be inaccurate around 
the breaking point. To improve the accuracy in estimating sediment transport around the breaking 
point and at the same time to include the sediment transport due to asymmetric oscillatory motion of 
nonlinear waves during one wave period, another set of energetics-based sediment transport 
equations is needed. 

The bed load and suspended sediment equations were formulated to include a threshold value 
for the initiation of sediment transport. In the case of bed load transport, this threshold value can 
include the effect of wave breaking on the bed load transport. The bed load transport qB (t) at any 
time t was formulated as: 

*•'" '• "    '• »• "•"> CO., I ;= aB\nt)\"[max(V(t)-Vc,ol 
\pJp-l)gD?        "'       ' L       ' |«t(')| 

where Cfa, a and b are parameters that need calibration, T is the critical Shield's parameter for the 
initiation of bed load transport, ub(t) is the near-bottom velocity at time r, pt is the density of the 
sediment particle, and p is the density of water. 

Investigations by Kabiling and Sato (1993) on their second sediment transport model based on 
Bailard (1981) equations revealed that the overestimation of the total sediment transport at the 
breaking point was mainly coming from the estimation of the suspended sediment transport which 
was modeled in terms of the near-bottom velocity raised to the fifth power. This can be corrected by 
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expressing suspended sediment transport as a function of near-bottom velocity raised to less than the 
fifth power. Furthermore, it was revealed that the first sediment transport model by Kabiling and Sato 
(1993) was able to simulate the suspended sediment transport. This leads one to adopt a form for the 
present suspended sediment transport equation in the form: 

'*(0      -Uax^O-M]'.^ dOb) 
w.D. k(0 

where qs (t) is the suspended sediment transport rate, ws is the sediment particle fall velocity, and c% 
and p are parameters that also need calibration. Equation (10b) is different from the second sediment 
transport by Kabiling and Sato (1993) since it is expressed as a function of the instantaneous near- 
bottom velocity. This will result in the inclusion of the effect of nonlinear waves on the suspended 
sediment transport. In both Eqs. (10a) and (10b), the Shield's parameter is estimated using the 
Jonsson (1966)[6] friction coefficient: 

/„    few]2 

2 \p,lp-y&D, 
The total sediment transport in the present model is estimated by the summation of Eqs. (10a) 

and (10b). Sediment transport rate in the swash zone was overestimated due to the large velocity 
moments from highly nonlinear waves that are usually found in this zone. The direction of the net 
sediment transport was also seen to have been always in the offshore direction which indicated that 
the offshore rush was larger than the onshore rush. This may be due to the big difference in the water 
depth during onshore and offshore rushing of the shoreline. During the offshore rush, total water 
depth is less than that during the onshore rush so larger velocities will result during the offshore rush. 
In order to avoid unrealistic erosion, sediment transport rate in the swash zone was linearly 
interpolated between the sediment transport at the still water shoreline and the zero sediment 
transport at the maximum beach run-up point. 

To calculate the local bottom elevation change due to the sediment transport, the sediment 
conservation equation proposed by Watanabe et at (1986) is used. The sediment conservation 
equation is given by 

where z is the bottom elevation, /Z (=0.4) the sediment porosity, and e is a coefficient that reflects the 
effect of local bottom slope on the sediment transport. 

3.2. Two-dimensional beach deformation 

Watanabe etal. (1980)[19] measured the change in beach topography in a wave flume. In one 
set of the experiments, the initial bed slope was tanzfc 1/20 and the sediment mean diameters were 
Dt =0.2 and 0.7 mm respectively. Monochromatic incident wave periods were 1.0, 1.5, and 2.0 s 
while wave steepness varied from 0.006 to 0.073. The beach was exposed to wave action for a period 
of one hour. At the end of this period, the beach profile was measured and the cross-shore sediment 
transport rate was computed based on the measured beach deformation. 

One-dimensional wave computations for six cases were done. Based on the computed velocity 
field, Eqs. (10a) and (10b) with Eq. (12) were used to estimate the beach deformation for each case. 
The values of the parameters in Eqs. (10a) and (10b) were ccB = 1.0, a = 0.5, b = L0, as= 3.5, 
p = 10, and ¥ = 0. Since surf zone beach deformation is of prime interest in the present study, the 



2564 COASTAL ENGINEERING 1994 

0 2 4 
Distance from Initial SW Shoreline (ml 

(a) Di = 0.2 mm 
Figure 5    Computed bed elevations and cross 

0 2 4 
Distance from Initial SW Shoreline (m) 

(b) Dt = 0.7 mm 
•shore effective net sediment transport rates. 

values of a and b were such as to make the bed load proportional to u^. The beach deformation time 
step At' c was estimated following Watanabe et al. (1986): 

At' < min 
1    Ax2 1    Ay1 

'24i, 
(13) 

where Ax and Ay are the grid spacing in the x-axis and y-axis respectively, qx and qy are the net 

total sediment transport rates in the x-axis and y-axis respectively and s= 4.0. 

(1) Fine Sediment 

Figure 5(a) shows the computed bed elevation, cross-shore net bed load q'B, suspended 
sediment q's, and total sediment q' transport rates (which are positive in the onshore direction) for 
A = 0.2 mm and tarv?= ]/20 (Cases A-213, A-225 and A-234). The closed triangle indicates the 
computed location of the breaking point. When compared with the measured beach topography (open 
circle) and computed net sediment transport rate (closed square) of Watanabe et al. (1980), the 
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magnitude of the computed beach deformation and sediment transport rates have the same order of 
magnitude. This confirmed the values of the parameters used in Eqs. (10a) and (10b). 

The direction of the sediment transport as computed by Watanabe et al. (1980) was generally 
offshore. Sand ripples were observed during the experiment which indicated the predominance of 
suspended sediments. The direction of sediment transport was simulated correctly by the present 
model with suspended sediment transport accounting for approximately 60% of the maximum total 
sediment transport which occurred at the breaking point. Unfortunately, this cannot be confirmed 
with the data since the contributions of bed and suspended load cannot be separated in the laboratory 
experiment. The location of the breaking point was correctly estimated by the wave model and 
generally was between the initial and final measured location of the breaking point. 

(2) Coarse Sediment 

Computation results for Cases B-215, B-225 and B-234 where Ds = 0.7 mm are shown in Fig. 
5(b). When compared with measurements of Watanabe et al. (1980), it can be seen that the computed 
beach deformation and net sediment transport rates are also consistent. The computed sediment 
transport was onshore-directed which is consistent with those computed by Watanabe et al. (1980). 
Watanabe et al. (1980) noted that the bed load was predominant in cases where D, = 0.7 mm. At this 
sediment size, the computations in this study still indicate the predominance of the suspended 
sediment. This renders inconclusive the investigation on whether the present sediment transport 
model can simulate properly the proportion of bed load and suspended sediment transports. 

3.3. 3-D beach deformation 

In a 3-D beach deformation laboratory experiment, Watanabe et al. (1986)[20] measured the 
wave heights, currents, and beach deformation around a detached breakwater. Sand with a median 
grain diameter of 0.2 mm was placed on a 4 m long by 7.2 m wide wave basin with an initial slope of 
tan/7= 1/20. A 1.5 m long and 0.5 m high model detached breakwater was placed parallel and 1.8 m 
offshore from the initial shoreline. Monochromatic waves with period and wave height T= 0.87 s 
and Ht = 4.5 cm respectively were incident normal to the initial shoreline. The bottom topography 
was measured at £ = 0:00, 2:37, 5:05 and 6:55 (hnmin). The location of the breaker line was 
determined from overhead photographs taken near the middle of each time duration while the wave 
height and current fields were measured from t = 0:00 to 2:37, t = 2:37 to 5:05, and t = 5:05 to 
6:55. 

To verify the wave-current model performance under steeper bottom slopes and to verify the 
3-D beach deformation model, numerical results were compared with measurements from this 
experiment. Two-dimensional numerical computations on a half-width of the wave basin were done. 
The uniform grid spacing was Ax = Ay = 4 cm, the computation time step was At = 0.035 s, and the 
bottom friction coefficient was estimated from the Jonsson (1966) friction factor formula. The 
incident boundary was set as an open boundary while the adjacent side boundaries were fully 
reflecting boundaries. 

(1) Breaker Line 

The computed breaker line location at t =0:00 is shown in Fig. 6 taken at quasi-steady state 
that was achieved after 40 wave periods. In Fig. 6, it can be seen that the general location of the 
computed breaker line agrees with the measurements of Watanabe et al. (1986). Simulation by the 
present wave-current model was particularly good in the region behind the breakwater. This 
confirmed the applicability of the 2-D wave breaking criterion in a predominantly 2-D wave field. 
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(2) Beach Deformation 

Equations (10a) and (10b) were used to 
estimate the 2-D sediment transport based on the 
computed 2-D velocity field. The parameters 
used in Eqs. (10a) and (10b) were <a& = L0, 
a= 0.5, 6 = 10, 35 = 3.5, p = L0, and ¥ =0. 
These values are similar to those used in 2-D 
beach deformation in the previous section. 
Equation (12) was then applied to calculate the 3- 
D beach deformation. The time step in the beach 
deformation computation was estimated by Eq. 
(13) with <f=4.0. 

Figure 6  Comparison of breaker line 
location. 

The first 2-D wave-current computation 
followed  by the first 3-D beach deformation 
computation gave results that were compared 
with measurements during the period t = 0:00 to 
2:37 (hr:min). Using the newly computed beach 

topography at t = 2:37, the second 2-D wave-current computation followed by the second 3-D beach 
deformation computation were made and results were compared with measurements during the period 
t = 2:37 to 5:05. 

The swash zone sediment transport was found to have been largely overestimated by the 
model as was discussed in 2-D beach deformation modeling. Hence, the sediment transport vector in 
the swash zone was linearly interpolated between those at the still water shoreline and maximum 
beach run-up point. The computed beach topographies are shown in Figs. 7(a) and 7(b). Compared 
with the laboratory measurements, it can be seen that the accretion behind the breakwater was 
simulated well. The alternate pattern of erosion and accretion in front of the breakwater was also 
simulated as well as the erosion at the tip of the breakwater. Some discrepancies still exist 
particularly at the region beyond the tip of the breakwater where the measured erosion was simulated 
at about 1 m onshore. When the computed and measured breaker line locations are compared, it can 
be observed that in this region, the computed breaker line was located onshore by roughly the same 
amount. This may explain the discrepancies in this region. This is further reinforced by the fact that 
both the measured and computed breaker lines are located along the steepest change in their 
respective bottom topographies. Moreover, the instantaneous near-bottom velocity may not have been 
estimated accurately in the region. 

Comparing with results from the simple sediment transport model by Kabiling and Sato 
(1993), the present model simulated the beach topography change due to asymmetric nonlinear waves 
in the region bounded by x> 2.0 m and y>1.5 m where x is the cross-shore distance from the 
incident boundary and y is the alongshore distance. In this region, erosion was simulated in the 
offshore side of the breaker line while accretion was simulated on the onshore side of the breaker 
line. In general, the measurements were qualitatively simulated by the present model and 
computations are consistent in magnitude particularly in the region located behind the breakwater. 

(3) Wave Height and Nearshore Currents 

The wave height and currents computed from the bottom topography at t = 2:37are shown in 
Figs. 8 and 9 respectively. These figures show results from computations started from still water 
conditions. The currents are the time average of the computed velocity field over one wave period. 
Agreement with measurements was improved over those presented by Kabiling and Sato (1993). The 
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Figure 7   Computed beach topographies. 

computed wave height shown in Fig. 8 exhibits an overall agreement with the measured wave height 
particularly in the surf zone. This can be observed by comparing Fig. 8 with Fig. 5.10 in Horikawa 
(1988)[3], The nearshore circulation pattern behind the breakwater was simulated well by the present 
model as seen upon comparison of Fig. 9 with Fig. 5.10 in Horikawa (1988). The computed current 
magnitude was found to be consistent with the observed nearshore circulation pattern. 

4.   CONCLUSIONS 

A two-dimensional nonlinear dispersive wave-current model was presented on the basis of the 
Boussinesq equations. The wave breaking criterion that is based on the ratio of water particle velocity 
at the surface of the wave crest to the wave celerity was found to accurately predict the breaker line 
location for a three-dimensional wave field. The correction terms that were introduced into the 
momentum  equations  were  found  to   sufficiently   simulate  the   wave  decay  caused   by   the 
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Figure 8   Computed wave height after initial beach topography change. 
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Figure 9  Computed currents after initial beach topography change. 
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momentum mixing and strong turbulence at the front face of the breaking wave. The wave set-up and 
set-down as well as the nearshore current have been simultaneously simulated by the model. The 
temporal variation of water surface elevation and near-bottom velocity was accurately estimated 
outside the surf zone. The accuracy of the estimation in the surf zone was slightly impaired. This can 
be caused by the use of a constant eddy viscosity during one wave period, the limited accuracy of the 
Boussinesq theory to weakly nonlinear and weakly dispersive waves, and by the assumption of a 
nearly horizontal bottom. 

Beach evolution around a detached breakwater was estimated on the basis of the computed 
wave-current field. There was a general agreement and consistency with laboratory data of the 3-D 
beach deformation simulation result. The accretion behind the breakwater was simulated. The present 
sediment transport model was found to simulate surf zone sediment transport in the cross- shore and 
longshore directions including that caused by asymmetric wave motion. However, the present model 
was still seen to be unable to simulate the sediment transport in the swash zone. 
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