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A QUASI-3D SURF ZONE MODEL 

Jung Lyul Lee1 and Hsiang Wang2 

ABSTRACT 

This paper presents theoretical circulation patterns in both cross-shore and 
longshore directions on the plane beach slope. In the model an amended form of 
radiation stress which is consistent with the wave energy flux in the wave-current 
coexisting field is presented. Comparison of theoretical surf zone properties with 
laboratory experiments showed good agreements. Finally, a quasi-three dimen- 
sional model suitable for the entire nearshore zone is presented by linking the 
depth-integrated properties with vertical profiles. 

1. INTRODUCTION 
A prominent feature in the nearshore zone is the wave-induced current. It 

is commonly accepted that the primary driving force is the wave-induced /adi- 
ation stress first introduced by Longuet-Higgins and Stewart (1961). Modeling 
this circulation has advanced considerably since the earlier development by Noda 
et al. (1974) and Ebersole and Dalrymple (1979). Both of these earlier mod- 
els were driven by a wave refraction model with no current feedback. In recent 
years, coupled wave-induced circulation models have also been developed (Yoo 
and O'Connor, 1986; Yan, 1987; and Winer, 1988). All these models depth- 
uniform circulation patterns and can, therefore, be classified as two-dimensional. 
They are not suitable for surf zone where current is vertically non-uniform. This 
feature is particularly prominent in the cross-shore direction because the onshore 
mass transport produced by the depth-varying momentum flux has to be com- 
pensated by the return flow due to the depth-uniform set-up force. This driving 
mechanism was first suggested by Dyhr-Nielsen and Sorensen (1970) and treated 
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analytically by Dally (1980). Effort has since been made to produce cross-shore 
circulation patterns inside the surf zone such as the undertow model developed 
by Svendsen (1984), Buhr-Hansen and Svendsen (1984) and more recently, by 
Okayasu et al. (1988) and Yamashita and Tsuchiya (1990). It is only natural 
to attempt to develop circulation models that can address both horizontal and 
vertical variations in the nearshore zone. So far the effort is still few. De Vriend 
and Stive (1987) recently formulated a nearshore circulation model by employing 
a quasi-3D approach. At present, this approach is attractive from both theoritcal 
and computational point of view. 

One of the handicaps of all the existing depth-varying models whether cross- 
shore models or three-dimensional models is the pre-requisite on the large number 
of empirical coefficients that have to be assigned. This severely limits their appli- 
cation as one must be confident on the behavior of these coefficients under various 
natural conditions. Recently, Lee (1993) presented a formulation on current-wave 
interaction problems. In there, the radiation stress term in the momentum equa- 
tion is amended, and two new conservation equations governing intrinic wave 
frequency and wave action are introduced. In this paper, this new formulation 
is utilized to develop a depth-varying circulation model. The difference between 
the new model and the existing models is quite significant. First of all, since 
radiation stress is the primary driving force for circulations an amended formula 
alters this force. Secondly, the new model has stronger theoretical basis and re- 
quires fewer empirical coefficients owing to the fact the model must satisfy the 
additional governing equations. An analytical model for a straight shoreline of 
uniform slope is introduced first to explore the nature of the model and to facili- 
tate comparisons. A general version suitable for the entire nearshore zone is then 
developed by linking the depth-integrated properties with depth-varying models. 
The numerical technique is briefly addressed and examples are given. 

2. HORIZONTAL CIRCULATION MODEL 
The governing equations for the horizontal circulation model are obtained af- 

ter depth integration and wave-averaging. In order to protect from losing the 
Eulerian mean quantities at the mean water level, the depth integration is taken 
prior to wave-averaging them. The strong presence of turbulence is a prominent 
feature in surf zone. Consequently, the fundamental equations governing the fluid 
motion should also include the turbulent effects. This is usually accomplished 
with the introduction of Reynolds stresses by time averaging over the turbulent 
fluctuations. 

2.1 Depth-Integrated and Time-Averaged Equation of Mass 
Integrating the continuity equation for incompressible fluid over depth and 

employing the kinematic boundary conditions on the free surface and on the 
bottom, we get 

-£+TxL
udz+d-yLvd^° (1) 
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Now let the turbulence-averaged velocity vector, U(w,u, w), and the surface ele- 
vation, rj, be decomposed into mean current and wave fluctuation, which will be 
distinguished by the subscript c and w, respectively; thus, 

U = Uc + U„„       r\ = T]c + T/U (2) 

where \5m and rjw are the residual wave fluctuation which can be removed through 
the process of wave-averaging, and Uc and TJC are the time-averaged value of 
velocity. The velocity at a particular water level with a mean position of (xi, Zi) 
is U(xi, «i + £), where £ is a location of the vertical trajectory being up and down 
with the residual wave fluctuation at Xi. 

Then, we obtain the wave-averaged value of velocity, Uc, as 

1   rT 

Uc(x1,21) = - /   U{xuz1+()dt 
I Jo 

Substituting Eq.   (2) and taking the wave-average after expanding in a Taylor 
series at rj = r/c, Eq.(l) can be simplified as 

dnc      dp*,       d . ,        d   /•"« d , , 

The wave components are given by linear progressive wave theory as follow: 

dt      dx P J-h 

d   pi* 
cdz + —        vc 

ay J-h 
dz + 

dMx     dM„ 
di -h p 

where the x and y components of mass flux are defined as 

dy 
0 

Mx = M„ 

(3) 

(4) 

(5) 

and E1 is defined as pgH2/8. The mass flux terms are considered the mass trans- 
port above the mean water level. 

2.2 Depth-Integrated and Time-Averaged Equations of Momentum 
Assuming that no horizontal viscous stress exist, the horizontal momentum 

equation in the x direction is integrated over depth to yield 

dt 
[i    ,       d   [*      ,       8   f 
/    adz + — /    uudz + — /    uvdz 
J-h ox J-h av J-h 

dh op,        , ori       .Oh 
—-   /      pdz+p\v—+p\-h-5- +TWx - TB. 
ox J-h Ox ox (6) 

where TWX — ^iltj is a wind stress in the x direction and TBX = Tzx\^h is the 
bottom friction.   Substituting U and r\ defined in Eq.   (2), the time-averaged 
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quantities is also obtained by expanding rj in Taylor series at the mean water 
level, yct 

.*Ucdz+TX L Ujz+^L u^dz+yx L <dz+d~y L u^dz 
at. 
+g:(Vwivw)\nc + g-(2r}wucuw)\ric + g-[T]w(ucvw + vcuw)]n 

dh Of,        .    Oh            
-YxLpdz + fUYx

+TWx~TBx (7) 

where the pressure at the free surface was assumed to be zero and then the total 
pressure is given as 

p - P + Pw = -pu>l(z) -f pg{r)c -z) + pgriwKp(z) 

where Kp is the pressure response factor given by linear wave theory, 

cosh k(h + z) 
p     cosh k(h + rjc) 

(8) 

(9) 

Substituting Eq (8), finally, the depth-integrated and time-averaged momentum 
equation in the x direction is obtained; 

d   fie d   ric  2 ,       8   rvc 

aiLUedz+d^Lu'dz+diLUeVed- 
+ 

dy . 
1 dSxx :  1 dSyx t    n  t     ^di]c     f^z , TB. 

p Ox      p Oy ox 
+ — = 0 

P        P 
(10) 

The momentum equation in the y direction can be similarly obtained, 

artl-HVjz + TxLU^dz + ¥yl-h
VjZ 

1 8SXV  .  1 <9SVI 

p ox      p ay ay 
%        TWy       Tfly = Q (ID 

For the case of linear progressive wave and mild slope, the radiation stress terms 
can be expressed in terms of wave charateristics as 

Sxx   =   E'{n(cos26 + l)-^ + 2cos8^} 

Sxy   =   Syx = £'[sin 6(n cos 9 -f -£) + cos 0-£\ 

Syy   =   E'[n(Sm
26+l)-± + 2sm0^} 

(12) 

(13) 

(14) 

where n = Cg/C and us and vs are the time-averaged current velocity at mean 
water level. It is noted here that the definition of the radiation stress differs from 
that given by Longuet-Higgins and Stewart (1961) with the additional advective 
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terms.  The amended form of radiation stress has been proven to be consistent 
with the wave energy flux in the wave-current coexisting field by Lee (1993). 

3. VERTICAL CIRCULATION MODEL FOR STRAIGHT SHORE- 
LINE 

For the case of straight shoreline and parallel offshore contours the cross- 
shore and longshore components are decoupled. This simplifies the mathematical 
manupulation considerably. 

3.1 Theoretical Undertow Model 
The vertical ciculation in the x-z plane is treated as quasi-steady. Since 

there is no y-direction (longshore) variation, the turbulence-averaged momentum 
equation in the z-direction (onshore) integrated from any level z to the mean 
water level can be written as 

9 r A     i   l 
— /   uuaz — itw\z •= - 
ax Jz p 

where the shear stress is assumed to be expressed in the form 

du 
Tzx = PVt dz 

(15) 

(16) 

with vt defined as the total kinematic viscosity, which is composed of both eddy 
and molecular viscosities in the vertical direction. The shear stress at free surface, 
r|,, is assumed only due to wind stress Tw- Separating the velocity into the 
current and wave components and taking time-average, Eq. (15) becomes 

"« 
du, d 
IT"- = -h f ra - <)dz ~ ^+£(w^ - *(* - ^ +TWx 

2 dx dx 

(17) 

The convective term of the mean current was assumed to be small enough com- 
pared to the rest. In shallow water, the first term on the right hand side becomes 

d   ric       
I   i<-<)dz dx 

and the second term reduces to, 

(ijc + h)dx 
(cos2 e + 1 

H 2" 

2 dx 

g OH2 

(18) 

(19) 
16 dx 

The fourth term can be determined by the depth-integrated equation of momen- 
tum, Eq. (10), under the following assumptions; 1) the flow is in steady state, 
and 2) the effect of squared mean current are negligible. Then, Eq.(10) becomes 

di]c 

dx 

1 

pg{h + tjc) 

\dSx, 
- TWx + TBx (20) 
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Substituting Eqs.  (18-20) into Eq.   (17) and introducing non-dimensional vari- 
able, z' = (T)C — z)/(r)c + h), results in, 

v%    duc ,    g dH2 d        Qu3H
2      Wi 

p ] 

-r6-d^+29^cosecT)+—    (21) 

According to the above equation, we can estimate the shear stress at the mean 
water level, 

vt    duc, g dH2     „   d ,      „u, H2.     TwZ .„„. 

-nrnn>?]*= - w&-+2^(cos ' <JT>
+~f       ^ 

and the shear stress at the bottom, 

"«    duc Tgz 
\-h = ,  .  o ,.-» (23) r)c + h oz' p 

Now we assume that the turbulent motions originating from the surface wave 
breaking is governed by an constant eddy viscosity, and that the boundary layer 
remains thin. Then, the above equation can be solved explicitly to give the 
following solution, 

uc{z') = u, -f Cxlz
a + Cx2z' (24) 

w here 

r)c + h( gdH2 d        nu,H2       TWX     rBx<tb\ 
Cxi   =   — \— -r. 2g7r(cos0——- + •-}      (25) 

2ez    {16 ox ox C  8 p p   } 

r]c + h(    g dH2 d u,H2      w^\ ,OR, 
Cx2   =   -_|-__ + 2ff_(coBfl-T) + —-j (26) 

where ez implies the constant eddy viscosity which will be estimated in Section 
3.3. According to this equation, the mean flow pattern inside the surf zone in the 
main region is essentially parabolic. The analytical solution for a plane beach is 
presented to simplify mathematical operation and to facilitate comparisions with 
data. 

The profile given by Eq. (24) contains 3 physical parameters, the surface cur- 
rent, the eddy viscosity and the bottom friction. One of them can be eliminated 
by constraint that, in the cross-shore direction, the net flow has to be equal to 
zero for a steady case, or 

ucdz + —- = 0 (27) 
-h p 

where Mx is wave-induced mass flux. Eliminating T& from Eqs.(24-26) and (27), 
the coefficients can be rewritten as 

Cxl=3(u^us)-
3-^±Jlp,        Cx2 = ^±P (28) 

I. 
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where 

_      gdE2     „   d U.IP _ Mx g cos 6H2 

F^T6-^-2gd-x
{cosecT)'     U = -^TI) = -8C(^TI)   (29) 

3.2 Theoretical Longshore Current Model 
The longshore current profile can be obtained in a similar manner. For a 

straight shoreline, the surface gradient as well as the radiation stress gradient in 
the y-direction can be neglected. Again, neglecting the convective term of the 
mean current, the momentum equation in the y direction yields, 

d  n< 
dx 

n?c  d    d     1 
/     vwuwdz + -K-(r]wVcuw)\nc + -g-{VwUcvw)\Vc = - 

  dvc (30) 

Since the second and third terms become zero (Lee, 1983), Eq.  (36) is reduced 
to 

d   fi°  Twy~        dvc. ,    . 
— /    vwuwdz = vt-—- \z (31) 
ox Jz p oz 

In shallow water, the LHS becomes 

d   r* ,       (tic - z) d , H2 

dx-l v^dz=(^eTh)dibco8esm0T] (32) 

by linear wave theory. Substituting Eq. (32) into Eq. (31) gives the following: 

vt     dvci , d H2       r^ 
-z'—[g cos 6 sin 0—-] + —y- (33) 

ric + h dz' ' dx 8 p 

Integrating Eq.(33) with respect to z' with introduction of depth-independent ez 

we obtain, 

v{z') = vs + Cylz'2 + Cy2z' (34) 

where 

cyi = -z -T-igcosBsmO-—- ],       Cy2 =  (35) 
lez   ox b ez      p 

Or, alternatively, Cy\ can be expressed in terms of radiation stress as 

T) + h 1 dSrx 

^ = ^Tp-^x- (36) 

For steady longshore current, the depth-integrated radiation stress is balanced by 
the bottom friction under no wind. The depth-averaged mean longshore current 
is given by, 
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3.3 Estimation of Surface Velocity and Eddy Viscosity 
The solutions for cross-shore and longshore current profiles will be complete 

if the surface velocity and eddy viscosity are determined. Lee (1993) has shown 
that the surface current can be determined semi-analytically by virtue of wave 
action and intrinsic frequency conservation equations; both of them are surface 
conditions. The solutions briefly summarized here. 

The surf zone is assumed to be coherent in that the essential wave-like periodic 
motion is retained and is quasi-steady when time-averaged over wave period. 
In this case, the wave action and wave frequency conservation equations are, 
respectively, 

Vfc-(U.—) = 0,        VA • (U,crs) = 0 (38) 

Here a, denotes a inside the surf zone. The wave energy equation is modified to 
reflect dissipation, 

VA-[(Cg + CgD + Us)— ] = 0 (39) 
a, 

with CgD representing a disspation velocity. Eliminating a Us term of Eq. (39) 
based on the first equation of Eqs.(38), the cross shore component of Eq. (39) 
provides 

H=(Ca   PH Co) (40) 

and also the surface currents are obtained, 

w. = Pc{CgDx - Cgx),       vs = /3L(CgDy - Cgy) (41) 

with /?'s the constants of proportionality. They further assume on two-dimensional 
beaches of uniform slope that the dissipation inside the surf zone is dominated by 
the influence of the initial condition at the breaking point and Cgp to be equal 
to — /?Cg6. The above equations can then be written as 

cosO(f3Cgb-Cg) 

us = fa cos 6{l3Cgh -C„),       vs = fa sin 6(/3Cgb - Cg) (42) 

Thus, the wave height and surface currents are determined explicitly.   Figure 
1 shows the comparison of wave height variation in the surf zone between the 
present theory and the laboratory data by Horikawa and Kuo (1966).   Figure 
2 compares the theory with the laboratory longshore current data measured by 
Visser (1991). 
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The vertical eddy viscosity for both cross-shore and longshore components is 
treated as the same and is estimated from the longshore mean current strength. 
From Section 3.2 we can obtain, 

P V + h. 

In a flow field where the turbulent-induced stress dominanates the bottom fric- 
tion, the bottom stress can be approximated by, 

l£H^ ~ EH^D (44) 
p       ca 

where C0 = u/k and D is the local rate of energy dissipation. Based on Eq.(39), 
D can be expressed as 

D = -V-lpCg£-E'} 

Eliminating the bottom stress term from Eqs.(43) and (44), an expression for the 
eddy viscosity is obtained, 

e,. sin0D 
(45) 

i] + h      6Cap(v - v„) 

which relates the eddy viscosity to the the mean longshore current strength. 
In the following computation we simply assume that mean longshore current 
strength is proportional to the surface current strength, that is, 

v = fvs ' (46) 

with 7 the ratio of mean current to the surface current. Therefore, the eddy 
viscosity can be simplified as the following explicit expression, 

1 |Uort| a
:(cos*10 (47) 

r,c + h 2A{l-1)$L{\-Cgl{pCgb))dx" 

3.4 Data Comparisons 
In this subsection, each theoretical solution is compared with data measured 

on the plane beach of uniform slope. Wind stress effect is omitted in the solutions. 

Undertow Model 
The velocity profile is calculated by Eq. (24). Four parameters are to be 

designated; they are, 7: the ratio of mean current to surface current; /?: the dis- 
sipation coefficient; Pc'- the cross-shore current coefficient; and /?£,: the longshore 
current coeffcient. 

Figure 3 shows the comparisions of the computed vertical profiles of the cross- 
shore current with those measured by Buhr-Hansen and Svendsen (1984).  The 
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test conditions were: slope =1:34.25; H0 = 0.12m and T=l sec. The parameters 
used in the computations are: /3 = 1.17; /?c=0.07; 0L=5.O and 7=0.982. The 
limiting wave height at breaking point is determined by the Miche's criterion with 
K=0.78. Figure 4 plots the profile changes across the untire surf zone using the 
same paramters as given above. In order to examine the effect of the advection 
term, the results when the term is neglected are also represented as dotted lines 
in Figure 5. The effect seems to show the significant deviation from the measure- 
ments as it is close to the shoreline under the same input condition. However, 
the difference also seems to show the overall agreement with the experiments by 
small reduction of the 7 value as shown in Figure 5. 

Longshore Current Model 
Figure 6 shows the comparasions between computed profiles and the labora- 

tory data measured by Visser (1991). The test conditions were: slope=l : 10, 
H0 = 9.6cm, T = Isec and 0O = 16.4°. The values of parameters are as follows; 
/3=1.2, /?£=5.0, and 7=0.96. It is seen that 7 plays an important role. A maxi- 
mum value 1 results in a uniform longshore current profile whereas a value 2/3 
results in a no-slip bottom velocity. From the comparisons with experimental 
data, a value near 0.95 is suggested. Figure 7 plots the longshore current profile 
variations across the surf zone. 

Figure 8 illustrates the three-dimensional current profiles inside the surf zone 
using the same conditions as Figure 5 with the exception that the input wave 
is oblique at 10° in deep water clockwise to the shoreline normal. The three- 
dimensional current forms a clockwise spiral from top to bottom. 

3.5 Model Adoption for General 3-D Tophography 
The theoretical models so far developed are for parallel contours. For irregu- 

lar bathymetries, getting the surface velocity as the surface boundary condition 
might be ineffective for modelling, so the bottom shear stress in terms of depth- 
averaged current is considered as the boundary condition instead of the surface 
velocity. For the prediction of a longshore current this alternative way gives the 
exactly same result. For that of the undertow, however, this will give the differ- 
ent result. The bottom shear stress suggested by Longuet-Higgins (1970) is now 
modified for both cross-shore and longshore directions by 

r£j[ = pFw\uorb\fiJ (48) 

where Fw can be estimated in terms of wave characteristics as 

P     V-(KH/k) 
47& (/? - Cg/Cgb) 

(49) 

When the bottom shear stress given in Eq. (49) is applied as a boundary condition 
instead of the surface velocity, three coefficients of the undertow model, Cxi, Gxi 
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and u„ are written by 

fti   =   -"^—-{P + T^) (50) 

ft,   =   ^P (51) 
£z 

w*   =   « - -g 2~ (52) 

The result is shown in Figures 9-10 for the same experimental conditions as 
used by Buhr-Hansen ans Svendsen (1984) given in Section 3.4. The 'S.B.C 
indicates the full theory obtained by the surface boundary condition, and the 
'B.B.C indicates the approximate theory obtained by the bottom shear stress 
with neglecting the advection term. The full theory was obtained by 7=0.982, 
the approximate theory by 7=0.978. The comparison with experiments is still in 
agreement. Therefore, instead of the boundary condition given by surface cur- 
rents, the bottom shear stress is used in the practical model for the complicated 
bathymetry, and the advection terms are omitted. 

4. QUASI THREE-DIMENSIONAL MODEL 
The depth-integrated horizontal model is now combined with the vertical 

theoretical model to a quasi-3D model. This quasi-3D model looks promising 
since it provides three-dimensional information at almost the same cost of a two- 
dimensional horizontal model although it produces the relatively simple variation 
of vertical profile. 

Even for the general tophography, velocity variation with respect to depth 
may be approximated as the function of parabola of 2nd order. 

uc   =   Cxlz'2 + Cx2z'+ Cx3 (53) 

VC        =        CylZ'      +Cy2z'  +   Cy3 (54) 

where ft, ft and ft are expressed in terms of wave characteristics and current 
quantities such as H, h + r)c, Q(depth integration of velocity vector), and Tw- 

T)c + h [gdlP 
2ez \16 dx 

T]c + h f   gdH2 

£z {   16 dx 

rjc + h 
ftl         ft2 

3   ~~2~ 

r]c + h f g dH2 

2ez 116 dy 

r)c + h (    gdH* 

Cx2  =  -^{-h^r + ^f] (56) 
c-3   =   -^r-~-^ (57) 

^   =   -^if^-T^1^} (58) 

C,   =   -^\-^ + m (59) 
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Qy _   Cyl    _   Cy2 
r]c + h       3 2 

(60) 

Substituting Eqs. (53) and (54) into the convective acceleration terms yields 

"   Ql i: 
/    v.cvc 
j-h 

j-h 

Idz   = 
[(h + rjcY 

dz 

dz   = 

+   TX; 

(h + Vc)2 

Ql 
{h + Tjc 

+ Tm 

(h + 7]c) 

(h + Tic) 

(h + Vc) 

where 

T      = •* XT. 
4Cii  , Cx2 r CX\CX2 

45        12 6 

T      =   T •*• xy ^yx 
4CXlCyl CX2Cy2 Cxi Cy2 CrfCyl 

~J$ 12 12 12 

T     = 
45        12 

-,yl(-/S/2 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

Substituting into Eq. (10) leads to the following rr-directional modified momen- 
tum equation: 

9Qx      d     Ql .      d   QxQy 

~w + rJhT^c 
+ (h+^)Txx] + Ty

[h^c 
+ {h+*>r-J 

155M     195VI      ,,        .%     TWX     TBX 
+ 7T~ + 7f-+g{h+T)c)-Z "  +   

p ox       p  ay ox        p p 
0 (67) 

The modified momentum equation of y direction from Eq. (11) 

+ - ldSx. IdS, yy , „n. ,     \^r>c     Twy . Is» 
p  dx p ay dy        p p 

(68) 

As noted below, the bottom friction consists of turbulent shear stress and bottom 
frictions due to viscous and streaming flows, which can be expressed as 

TB = Fw\uorb\XJ + Fc\uorb\(UB,tb + Us(rm) (69) 

where UB^ represents the bottom velocity induced by turbulent flow and Us 

is the streaming velocity in the oscillatory boundary. 
The continuity equation results in the same equation as before. 

f + £;(Qx + Mx) + ly(Qy + My) = 0 (70) 
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5. CONCLUSION 
The surface advective terms were added to the conventional radiation stress 

by taking Taylor series expansion at the mean water level. The resulting radiation 
stress was proven by Lee (1993) to be consistent with the wave energy flux in the 
wave-current coexisting field. 

The surface properties obtained from the surf zone model enabled us to de- 
velop the theory for the vertical circulation model which had suffered obscurity 
of boundary conditions. In addition, the friction coefficient and eddy viscosity 
applicable to the turbulent flow in a surf zone have been estimated in terms of en- 
ergy dissipation. The developed model yielded the theoretical results comparable 
with laboratory experiments. 

Based on the examination of the theoretical model for vertical profiles of cur- 
rents in steady state, a quasi-three dimensional circulation model suitable for 
the entire nearshore zone is developed by linking the depth-integrated properties 
with the vertical profiles. 
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