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A NONLINEAR SURF BEAT MODEL

Zhili Zou' and Nicholas Dodd?

Abstract

A nonlinear, short-wave-averaged (surf beat) model is presented. The
model is based on that of Roelvink (1993), but the numerical techniques used
in the solution are based on the so-called weighted-averaged flux (WAF)
method (eg Watson et al, 1992), with time-operator splitting used for the
treatment of some of the source terms. This method allows a small number of
computational points to be used, and is particularly efficient in modelling
breaking long waves. The short-wave (or primary-wave) energy equation is
solved using a more traditional Lax-Wendroff technique. Results of validation
indicate that the model performs satisfactorily in most respects.

Introduction

There are two classical characteristic time-scales in a system of waves:
that of the individual waves and that of the wave groups. On the time scale of
the wave group the short-wave averaged momentum flux ("radiation stress”) and
mass flux ("wave-induced mass flux") vary slowly. This variation in time and
space of radiation stress and mass flux generates long waves with periods and
wavelength similar to the group periods and lengths. These long waves may
travel with the wave groups or they may be released as free waves if the wave
groups forcing them change rapidly, e.g. due to breaking in the surf zone. The
free waves either escape to deep water ("leaky modes") or are trapped at the
shoreline by refraction as "edge waves". These long waves are often collectively
called infragravity waves or "surf beat”.
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In the recent decades numerous observations have shown that the energy at surf
beat frequencies can be substantial, and in some cases even exceed that of the
short waves (Wright et al, 1982). Likewise, the shoreline amplitudes arising
from infragravity waves can be comparable to the run-up height of short waves
(Guza and Thornton, 1982; 1985). The importance of low-frequency motion for
the nearshore dynamics can be inferred from the fact that natural sedimentary
coasts often exhibit morphological features (bars and cusps) with length scales
considerably in excess of those of the wind waves. This is found to be
particularly pronounced in very shallow water. The effect of surf beat on
morphology was found to increase offshore transport and to move bars in a
seaward direction while reducing their amplitude (Roelvink, 1993). Recent work
done at HR Wallingford (Bowers, 1992) highlighted the need for accurate
numerical modelling of surf beat: physical model experiments using realistic
short crested waves demonstrated the importance of surf beat as well as incident
set-down in causing long waves inside harbours. This surf beat is produced by
groups of waves breaking on the shoreline surrounding the harbour. Due to the
large length of shoreline needed for realistic modelling of the generation of surf
beat in a physical model, an efficient mathematical model of surf beat
generation would be far more cost effective than extensive additional coastline
moulding in a physical model together with additional lengths of wave-maker.
The work in this report has been undertaken as a first step in meeting this need
in that only cross-shore wave modes are considered.

In the early sixties Longuet-Higgins and Stewart developed the concept of
"radiation stress", by which they explained how groups of high waves are
accompanied by a depression of the mean water surface. In other words, groups
of short waves force a long wave, which is known as the set-down or the bound
long wave. This concept successfully explained many of the early observations
of surf beat, and forms the basis of many subsequent surf beat models.

In one of the earliest such models, Symonds et al. (1982) assume that within the
inner surf zone, the short waves are "saturated", meaning that the variations on
wave group scale have vanished and the radiation stress gradients are constant
in time. Outside the surf zone, they assume that the horizontal variation of
radiation stress is negligible (and thereby do not include the effect of bound
waves). In the transition region, the breaking-point moves back and forth; in this
region there is a radiation stress gradient varying in time. This gradient acts as
a local forcing, comparable to a wave maker which generates waves both in the
onshore direction and (with opposite sign) in the offshore direction. The onshore
directed wave is subsequently reflected off the beach and interferes with the
offshore directed wave. Depending on the dimensionless width of the surf zone,
the relative phase of the two free outgoing wave components change, resulting
in an enhancing or damping of the total free wave radiated from the surf zone.
The fact that such an amplitude variation with the dimensionless surf zone width
exists was confirmed in laboratory experiments by Kostense(1984); however, the
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quantitative agreement between the model and experiments was not entirely
convincing.

Schiffer and Svendsen (1988) improved this model concept by including the
forcing outside the surf zone responsible for the bound long waves. In their
model this forcing is reduced in the surf zone but does not vanish completely
since they relax the rigid assumption of a saturated inner surf zone. Schiffer and
Jonsson (1990) compared this model with Kostense’s (1984) data and found
considerably better agreement; remaining discrepancies can be ascribed to the
lack of bottom friction and the use of linearized equations in their model.

Roelvink (1993) developed a nonlinear surf beat model based on short-wave
averaged mass and momentum conservation equations (Phillips 1977). To get
the radiation stress, a mean short wave energy transportation equation was
solved simultaneously, which included the effect of variation of mean water
level on the energy evolution. Numerical results for incident bichromatic waves
agreed with the Kostense (1984) data to different degrees depending on the
bottom friction coefficient used. For incident irregular waves, a narrow band
assumption was used to overcome the difficulty of determining the group
velocity of irregular waves, which is needed in the calculation of radiation
stress. Comparisons of numerical results with Van Leeuwen’s (1992) (random)
experimental data showed good agreement. This model was then applied to the
study of the effect of surf beat on cross-shore beach morphology.

The numerical models mentioned above are all based on the 'wave-averaged’
approach, i.e. averaging the mass and momentum conservation equations over
a short wave period and using the concept of radiation stress to express the
short-wave momentum flux. The disadvantage of this approach is that
questionable assumptions are made about the validity of linear theory for the
propagation of breaking waves within the surf zone. An alternative to this is to
use short-wave-resolving models to study the full wave motion, including the
generation processes of low frequency wave. This is usually done using either
the nonlinear shallow water wave equations (in the inner surf zone) or the
Boussinesq equations (or both). Whilst being more satisfactory from a
theoretical point of view, this approach obviously involves considerably more
computational time and expense than the wave-averaged approach. In this work
we therefore chose to follow the wave-averaged route.

Equations of motion

The shallow-water wave equations for the conservation of mass and
momentum (in 1-D) can be written (in so-called conservation form, and in the
absence of bottom friction) as
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d, + (dw, = 0 )

t
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where u is the depth-averaged fluid velocity, d is the total water depth, g the
gravitational acceleration constant, and A the still water depth (x is the offshore
coordinate, and { = d-h is the free surface elevation). The term on the right,
arising from the bottom slope w.r.t. x, is referred to as a source term. These
equations resolve the primary wave motion. In order to exclude this type of
motion, the original equations must be time as well as depth averaged. This
results in a similar continuity equation (see below), but additional terms appear
in the momentum equation. To treat these properly we start from the momentum
equation of Phillips (1977) describing time and depth-averaged 1-D motion,

d d 2 . I
-é;i_hpu dz + a—xi_h(Pu pydz = ph + % =0 ©)

where p is water density, and p, p, are pressure and pressure at the bottom
respectively, and an overbar denotes an average over a short wave period. The
following decomposition is made:

u = U + u 4

where U is the long wave velocity and «’ is the fluctuating component (due to
the primary waves). We define

d = h +T &)

so that d now denotes a mean total depth. Following Roelvink (1993) we define
fluxes

Q = |ude (6)
~h

and

Q, = |u' d D
-h

We introduce the velocity V such that

v=2% .. % ®
d d

and after some manipulations, and using the shallow water assumption, the final
continuity and momentum equations are arrived at:
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It can be seen that these equations have a similar form on the left hand side to
(1) and (2). We use this correspondence to apply similar flux-conservative
techniques to the solution of the wave-averaged equations (see below). The final
equation to consider is the equation describing the transformation of short wave
energy. It is the variation in this energy that will drive the incoming bound
waves. Assuming (Roelvink, 1993) that the characteristic short wave frequency
is constant in space and time we get an energy equation of the form

oFE 5}
—— + A = -D an
ot ax( gE)

In the model, the radiation stress, S,,, and the primary-wave-induced flux, Q,,

are represented by the expressions of Longuet-Higgins & Stewart (1964);
bottom shear stress is represented in the usual quadratic form. D, representing
the short wave decay due to breaking, is formulated using both the method of
Roelvink (1993) and of Battjes & Janssen (1978). In the runs performed so far
there has been little difference between the two methods. In view of this we
chose Roelvink’s method,

D(E,d)={l—exP[—{_I_{_Jn}20cfE (12)
vd g

it being rather simpler. Here, following Roelvink we take ot =1.0 and n = 10.
The parameter y will vary depending on the type of wave being studied. Its
value is given in each case studied. f, is the characteristic measure of the
(constant) frequency. For waves other than monochromatic waves we take it to
be an average of the constituent frequencies. Using linear theory it can be
shown that

H = 8E/(pg) (13)

so the system is now closed.

Numerical methods

In the WAF method applied to the shallow-water wave equations the
equations are solved in so-called flux-conservative form (eg (1) and (2)). Both
the original shallow water wave equations and the surf beat model equations can
be written in the same flux-conservative vector formulation
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u + F =S (14)

-t -x
where U represents the conserved quantities, and F represents the flux of these
quantities. The term S is the so-called source term, and it is this term that differs
depending on whether the equations are just depth averaged or both depth and
time averaged. This vector equation is solved in finite-difference form, using
fluxes at intermediate locations:

—i-1/2 —i+1/2

vt o= v o+ BF - F ) s s A (15)
i i Ax i

where t = nAt is the initial time, and t = (n+1)At is the time at which we want
to find a solution. The flux, which is found by solution of the local Riemann
problem at each cell, is then averaged over the cell width at the half time level,
and a total-variation-diminishing adjustment is made by means of upwinding,
in order to reduce spurious oscillations. The slope term can cause problems with
accuracy, but these are circumvented by making an appropriate transformation,
thus allowing it to be incorporated into the local Riemann problem solution (see
Watson et al. (1992) for details). The boundary condition at the seaward end
allows waves to propagate out of the solution domain without reflection, and the
shoreline is defined as the position at which the depth decreases below a
specified amount.

For the surf beat problem, we can decompose the source term into the slope
term and an additional term

seo_ O (sx) afow) T (16)
x| p dx d p

The problem caused by this additional term can be solved by applying the time-
operator splitting (TOS) method. Firstly we solve the following equations to get
a intermediate solution d* and V*:

3 3

S g e (var)- 17
pn 5! )=o an
Oyra)+ L [ved «vhgd?]=gd hx (18)
ot ox

These equations have the same form as (1) and (2), so they can be solved using
the same method for solving those equations, including the treatment of seaward
and shoreline boundary conditions. Secondly we solve the equations:

d =0 19

Vv = §° (20)
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starting with the intermediate solutions. This is the solution to equations (9) and
(10) given by the TOS method. The accuracy of this solution is first order
(Watson et al 1992), which is lower than that of equations (1) and (2). This
decrease of accuracy due to TOS method was remedied by using a
transformation similar to that of Watson et al (1992), but differing by the
quantity S”. Thus, at each time step and for the difference calculation at each
grid point we transform the problem into a reference frame that is accelerating
at the rate

a’ = -gh + S @1)

In this frame the new variables are

*

a
= - _t 22
g = x - 2 @)
T =t (23)
W =V - at (24)
D =d (25)
Substitution of (22)-(25) into (9) and (10) gives
Dé + (WD)F’ =0 26)
W, + WW, + gD, 0 27

Once the solution of the (26) and (27) has been found (using the same method
as for (1) and (2)), the solution of (9) and (10) can be effected by using
relations (22)-(25). The solutions so obtained,

dxp) = D(x - “2'At2 1) (28)
Vixy = W(x - az*Atz, )+ a'At (29)

provide the basis for the modification of the TOS method by inclusion of the
second order terms. Thus, noting that
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Figure 1. Mean surface elevation from model and experiments (Stive, 1983).
Crosses from experiments. (a) Test 1 (b) Test 2.

0,005’* i T T T T

- < 4

g 0.004 -
>
]

z L d
o
<
5

2 - B
0

5 | |
@
°

= 0.002~ ks
Ba

£ L 1
<

$ =

L + 4

0.000 - L P! L .

0.00 0.02 0.04 0.06 0.08 0.10
Average emplitude of primary waves (m)

Figure 2. Amplitude of bound waves vs primary wave amplitude. Diamonds
from experiments (Kostense, 1984). Crosses from model.
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d'Gp) = D(x + %gthtz, 9 (30)

Vi = W(x + %gthtz, H - ghAr 31
the final solutions of the surf beat model are

d (x, (n+1) AD) = d*(x, (n+1) Af) - gd (2 S* ALY (32)
X

- * aV* * 2 *

V(x, (n+1) A = V* (x, (n+]) A - - (V2 S*At?) + S*At (33)

X

During the numerical calculation discussed above, the short wave energy
equation (11) should be solved simultaneously to give the value of energy E for
the calculation of radiation stress S,, and short wave mean flux Q,. A one-step
second-order Lax-Wendroff difference scheme was used to solve the equation.

Results

The surf beat model has so far been validated only by comparison with
monochromatic (Stive, 1983) and bichromatic wave tests (Kostense, 1984). Both
of these tests were performed on plane beaches.

Two tests were examined in Stive’s data, corresponding to spilling and plunging
breaker types: Test 1 (spilling; wave height = 0.145m, period = 1.79s), and Test
2 (plunging; wave height = 0.145m, period = 3.00s). The flume consisted of a
flat bed section of depth 0.70m (continuing for a length of 10m) and then a non-
erodible constant slope of 1:40. In Figure 1(a) and 1(b) the mean free surface
elevation in the two cases is compared with the model result. It can be seen in
Fig. 1(a) that in the first case modelling is generally good everywhere other than
at the shoreline, where the mean shoreline is clearly overpredicted (this is
equally true of Test 2). To obtain accurate modelling of the region of the
breaker point
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Figure 3. Amplitude of free waves vs primary wave amplitude. Diamonds =
experiments (Kostense, 1984). Asterisks = model (f,=0.01). Crosses = model
(£,=0.05).
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in Test 1, a value of ¥ = 0.88 was used. The same value gave the best fit for

Test 2, but in this case modelling clearly is not as good. It is not clear why
modelling in this region should be inferior for Test 2. The model of Thornton
& Guza (1983) of wave height decay, on which the model of Roelvink is based,
works well for plunging as well as spilling breakers.

In the tests of Kostense (1984), the primary waves were made up of two
frequencies generated in a water depth of 0.50m which broke on a plane
cemented beach of a 1:20 slope after travelling over a horizontal stretch.
Figures 2 and 3 are, respectively, the variation of the bound wave amplitude and
the reflected free wave (out-going) amplitude vs the primary wave amplitude
£, with {/{, = 0.2. and A®w = 0.772, which corresponds to series C in
Kostense’s experiments. Figures. 4 and 5 are, respectively, the variation of the
bound wave amplitude and the reflected free wave (out-going) amplitude vs the
wave group frequency A® with {/C, = 0.2 ({, = 0.055m and {, = 0.011m),
which corresponds to series A in Kostense’s experiments (y = 0.88). The
procedure of the calculation to simulate the experiments is as follows. For a
given set of primary waves, the model is run until transients are no longer
present in the solution domain. The surface elevation time series are then split
into three components, viz. the incoming bound wave, the reflected free wave
and an incoming free wave. The incoming free wave is negligible since it is not
generated and the seaward boundary condition allows the reflected free wave
to propagate out of the model area. The amplitudes of the incoming bound wave
and the reflected free wave are determined by harmonic analysis as done in
Kostense’s experiments. Although more points are required for a more
conclusive comparison to be made, Fig. 2 seems to show the bound wave
amplitude increasing approximately quadratically, as expected. In fact, apart
from one point the position of which seems slightly anomalous, results are very
similar to those of Roelvink, as we would expect. The comparison with
experiment is quite good. In Fig. 3 we perform a similar kind of comparison to
that of Roelvink, by using two different values of bottom friction coefficient,
f, =0.05 and 0.01. A similar trend is found with regard to the dependence of
the amplitude of the outgoing free wave on the average amplitude of the
primary waves. The comparison is not as good as for the incoming bound wave.
This is not surprising since the reflected free wave will only emerge after the
processes of short wave breaking and run-up have taken place and we only use
linear theory to describe highly nonlinear processes in these regions.
Nevertheless, the agreement is good in parts. The agreement in Fig. 4 is
reasonably good (dependence of the bound wave on the group frequency),
although it appears to deteriorate for lower values of the wave group frequency.
The agreement in Fig. 5 is less than satisfactory at present. The experimental
results clearly show a peak in the response at around 0.6 rad/s. More analysis
needs to be done here if the interference patterns of Roelvink (1993) are to be
reproduced.
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Figure 5. Amplitude of free waves vs group frequency. Diamonds = experiments
(Kostense, 1984). Crosses = model.

Conclusions

A nonlinear surf beat model based on the same approach as that of Roelvink
(1993) has been presented. It uses a novel (for this application) numerical
scheme for its solution, which is highly efficient, especially for the case when
long waves break. The comparisons done so far indicate that it performs
reasonably well, but further validation is required, especially for random waves.
The advantage of a nonlinear model over a linear surf beat model is that we do
not have to identify beforechand the mechanism by which the free waves are
generated, as is the case for linear models (eg, Symonds et al, 1982). Certain
parameters are still present in the model however (unavoidably so), some of
which must be calibrated for different types of applications.
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