
CHAPTER 134 

SEA BED STABILITY ON A LONG STRAIGHT COAST 

E. Damgaard Christensen1, R. Deigaard2, J. Fredsae3 

Abstract 

A stability analysis is used to investigate the development of large-scale periodic 
bottom topographies on a straight uniform coast. The work is an extension of the 
work by Hino (1974) and (1976), and special attention is paid to improve and refine 
the description of the sediment transport. The effect of the bed slope on the bed load 
sediment transport turns out to be very important. Further, the behaviour of suspended 
sediment is described by introducing lag effects that modify the predictions of the 
wave length considerably. 

1 INTRODUCTION 

A coast is often irregular. Even a long straight coast can be very non-uniform 
in the longshore direction. A longshore bar can be crossed by more or less regularly 
spaced rip channels or it may be sinuous. Lippmann and Holman (1990) have shown 
several examples of different configurations of a coast that on a large scale is almost 
straight. 

Here the formation of large-scale periodic bottom topographies is in- 
vestigated by applying a linear stability analysis. The basic idea is to give a uniform 
bed a small perturbation. This perturbation affects the hydrodynamics and the 
sediment transport which again influences the bed form. It is then investigated 
whether the perturbation will grow in time or die out. For several different perturba- 
tions the one with the fastest growth is the one that would be expected to be 
dominant if the coast was given a random perturbation. 

The linear stability analysis is only valid for an infinitisemal small bed 
perturbations, but it is expected that some of the main features of the fastest growing 
perturbation would also be found in the coastal forms that actually emerge. 
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An investigation of this kind was carried out by Hino (1974) and (1976). 
Hino used a very simple model for the sediment transport, and the present work is 
an extension of that analysis, investigating the effect of more sophisticated sediment 
transport descriptions, including the effect of the bed slope, and the gradual adaption 
of the suspended load transport due to changing hydrodynamic conditios. 

DESCRIPTION OF WAVES, CURRENTS AND SEDIMENT TRANSPORT 

The analysis considers a uniform, plane (constant slope) coastal profile with 
a small perturbation. The geometry and coordinate system are shown in figure 1. The 
"breaker line" is here defined as the line where regular waves with a deep water wave 
height equal to the root-mean-square wave height for irregular waves at deep water 
would start to break. 

The chosen models for waves, currents, and sediment transport are as simple 
as possible, yet still represent the relevant physical processes. 

X-axis 

Figure 1 The figure shows the definition of the x and y-directions 

2.1 Wave description 

The waves are assumed to be irregular with Rayleigh-distributed wave 
heights. The breaking process is described by the theory of Battjes (1972), where the 
local wave height distribution is taken as the Rayleigh distribution where the wave 
heights are limited by the water depth: Hb = 0.8 h. This model is expected to give 
satisfactory results on a gently sloping, monotone beach profile. The assumption of 
irregular waves gives a smooth distribution of the driving forces and the longshore 
current distribution. 
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The waves are described by linear shallow water theory, which is expected 
to give a reasonable representation of the depth refraction and radiation stress 
variation in the surf zone. The wave conditions are specified at the breaker line xb 

where uniform waves would start to break. 

2.2 The current description 

The current is described by the depth-integrated equations for conservation 
of mass and momentum: 

Momentum in the x-direction: 

fo(*+T|) +    d(h+r\)u2 +    d(h+i\yvu + ?K + &2 _ 
dt dx dy dx        dy (1) 

-ps(A+r|)|3- - Tto 
ax 

Momentum in the y-direction: 

Mh+rj) +    djh+^uv +    d(h+n)v2 + &Z + <K 
dt dx dy dx        dy (2) 

"P*(*+I)|j- - ^ 

Mass conservation: 

^+11)  +  du(h+r]) +  oV(^+Tl)  = 0 (3) 
dt dx dy 

u and v are the depth-averaged velocities, r\ is the mean surface elevation, h is the 
still water depth, s^, sxy and syy are the radiation stresses, and tbx and tby are the 
components of the bed shear stress. 

The flow resistance is described by a simple model for the turbulent 
interaction between the current and the oscillatory wave boundary layer, Freds0e 
(1981), see also Fredsee and Deigaard (1992), pp 56-62. This gives a flow resistance 
represented by a logarithmic velocity profile, but with an increased bed roughness due 
to the wave boundary layer. 



1868 COASTAL ENGINEERING 1994 

2.3 Sediment transport 

The morphological development is described by the conservation equation for 
sediment: 

(l-»)»  = f?52    +   ^SS. (4) 
at        etc dy 

where qtoR and qtoty is the total sediment transport in x and y-directions and n the 
porosity. 

One of the main purposes of this study has been to consider the influence 
of the sediment transport model on the morphological stability. Three approaches 
have been investigated. 

The simple approach 

As a first approach the sediment transport rate is taken to be proportional to 
the local current velocity. This is the model used by by Hino (1974). 

«, = Cs V (5) 

where qt is the sediment transport vector and V is the depth-averaged velocity. The 
coefficient Cs is taken to be constant. 

The  bed load transport model 

The transport of sand is composed of bed load transport and suspended load 
transport, where the bed load transport qb is determined by the local instantaneous bed 
shear stress, from the combination of waves and current. 

The dimensionless bed load transport O b can be expressed as a function of 
the dimensionless bed shear stress, the Shields parameter 0. The formula of Meyer- 
Peter and Muller (1948) has been applied: 

** = 8(e' - ee) 

where   <bb =    and  0 
(6) 

J&W3 (s~1)gd 

6,. is the critical Shields parameter, 0C = 0.05, d is the grain diameter, and s is the 
relative density of the sediment. 

If the bed is sloping, there is an additional down slope component of the 
sediment transport. When the transport is directed up (or down) the slope, gravity 
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gives a down slope force component that has to be added to the force from the shear 
stress, giving a correction to the critical Shield's parameter: 

e - ee- «§ (7) 

where a is from 0.05 to 0.1 cf Freds0e and Deigaard (1992). 
When the transport is along the slope, the down slope component of the 

gravity deflects the direction of the transport by the angle \\i, which can be found as: 
(Engelund  and Freds0e 1982) 

tarn|r =  -— (8) 
1.6^^ 

For an arbitrary angle between the bed shear stress vector and the strike of 
the slope the effect of a longitudinal and transverse slope is combined. 

The bed load transport is determined by the instantaneous bed shear stress, 
and is then averaged over the wave period. The instantaneous bed shear stress is 
determined from the flow resistance model, using the wave friction factor fw on the 
combination of the near-bed wave-orbital velocity and the mean flow velocity at the 
top of the wave boundary layer. 

The suspended load transport 
The suspended sediment moves away from the bed in the water column. 

When the hydrodynamic conditions change, it takes some time for the grains to be 
entrained in the water column or be deposited. Therefore, it takes some time/length 
for the suspended load transport to be adjusted to a variation in the hydrodynamic 
conditions. 

The transport of the suspended sediment is calculated by the models of 
Freds0e et al (1985) and Deigaard et al. (1986) which includes the turbulent 
interaction between the wave boundary layer and the current and takes the turbulence 
generated by wave breaking into account. For the suspended sediment transport 
calculations the modelling system Litpack of the Danish Hydraulic Institute has been 
applied. 

The gradual adaptation of the transport to a gradient in the hydrodynamic 
conditions is represented by an adaptation length Ls, by which the transport lags 
behind the development in the forcing terms. Ls is estimated by the time it takes for 
a grain to settle from the concentration profile of suspended sediment: 

Ls = «AKo (9) 

where zc is the height from the bed of the centroid of the sediment concentration 
profile, ws is the settling velocity of the sediment and V0 is the mean flow velocity 
and a is a coefficient, which is expected to be of the order 1. 
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3 ZERO ORDER SOLUTION AND FIRST ORDER EQUATIONS 

The stability analysis is performed by using a perturbation method. First the 
equilibrium conditions for the longshore current and the set up are calculated. The 
equilibrium is perturbated, and the perturbated equations are found. Here the 
difference between the steady solution and the solution with a small perturbation is 
called the perturbated solution or the first order solution and the steady solution is 
called the zero order solution. If all types of perturbations of the bottom will die out 
in time, the equilibrium is stable. If the perturbation grows, the bed is unstable. 

To calculate the zero order solution - the profile without any bed undulations 
- is actually a project by itself. It usually requires a detailed on offshore description 
including undertow etc. This cross shore sediment transport is considered to be 
unimportant for the further development of sand bed undulations, and for reasons of 
simplicity it has been assumed that a coast with a constant slope is an equilibrium 
profile for the bottom. 

3.1 The steady solution 

The equations in section 2.1 are solved in the steady state. This means that 
U, V, T|, h only depends on x, because the initial conditions are described by parallel 
bottom contours and a constant slope of the bottom. By this U and all the derivatives 
with respect to y is equal to zero. 

When the description of the waves given by Battjes (1972) is used, a smooth 
set up is found from equation (1). The set up is a function of the angle of the 
incoming waves, the percentage Qb of the waves that break or have broken and the 
root-mean-square H,• of the remaining waves. 

The flow resistance is described by the simple model for turbulent interaction 
between the wave and current boundary layer, which gives an increased flow 
resistance for the flow expressed as an increase in the bed roughness. The flow 
resistance for the current is almost quadratic. 

3.2 First order equations 

When the steady solution is found, the bed is given a little perturbation. This 
perturbation affects the hydrodynamics. The response time concept is applied. The 
idea behind the response time concept is that the bottom perturbation will cause 
immediate changes of the velocities in the x- and y-directions, but quick changes in 
the flow motion will not result in a response from the bottom. Thus the hydrodyna- 
mics are considered to be quasi-steady, and it is only the time variation of the bed 
level that is included in the description. 
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The total velocity field, water elevation, and water depth can be expressed by: 

u = «W) 
V = V0(x) * vto) (10) 

n = n0(x) + nW) 
h = h0(x) + *W,0 

The first order perturbated equations can be found by substituting (10) into 
(l)-(4). All terms of higher order than one will then be omitted. The zero order terms 
will automatically fulfill these equations and can be cancelled out. With this we 
obtain equations that only contain first order terms. 

The gravitational acceleration g and the distance from the shore to the 
breaker line LB are used to make the equations non-dimensional. The dimensionless 
variables are written, 

x   -   •£- ,    k   -   k-LB ,    c    -    -£=   ,    q   -        q        (11) 

Each of the four differential equations can be put on a form as: 

dt      "ax     ady     l      "ax     *dy     ' 

+c"^+c>^+c^+D"ac+D^+d>h + D"^ + D»& + D'-^= ° 

(12) 

where i is the number of equation. w; is the variable that is derived with time in the 
equation, w4 = h, for the other variables this term is cancelled out due to the 
response time concept. The coefficients in (12) depends on the zero order solution 
and the description of the sediment transport. 

4 SOLVING THE EQ. BY FINITE DIFFERENCES 

The equations are solved numerically by finite differences. When the 
assumption of periodic conditions in the y-directions is applied, the dependent 
variables can then be written as: 
u = U(x)exp(iky) (13) 
v = V(x)exp(iky) (14) 
ri = Z(x)exp(iky) (15) 
h = H(x)exp(pt + iky) (16) 

Figure 2 shows a sketch of how the finite difference scheme is applied. The 
node points are distributed   over three times the width of the breaking   zone. The 
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start of the breaking zone is defined as the line where regular waves with a wave 
height equal to H0 would start to break. 

In figure 2 xb is the distance from the coast line at still water level to the 
start of the "breaking line". xt is the distance between the still water line and the 
actual water line. The total width of the breaking zone Lb is thus the sum of x; and 
Xu. 

3 U 
1  
0 1 

 1 
n-l n 

I'l II 1 II II II II II II II II II II II 

   -^ H(x) 

Figure 2   Sketch of the finite difference approximation. The points are distributed 
over three times the width of the "breaking zone" Lb 

Solution method 
The expressions in (13) to (16) are substituted into (12) by which four 

ordinary differential equations for U, V, Z and H are obtained. These are solved by 
introducing second or fourth order finite difference approximations for the derivatives 
of U, V, Z and H. For node points at the boundaries forward^ackward finite 
differences are used, and for the node points at 2 and n-2 second order finite differen- 
ces are used for terms that are not given on the boundary. As boundary conditions 
U, V, Z and H are set equal to 0 at the right boundary (deep water), and U is set 
equal 0 at the coast line, x = -xt, see figure 2. 

With this, a matrix-equation is found: 
Ax = px (17) 
The vector x has the dimension 4(n-l) and it has the form: 

x = (U„ U2,.. ,Un.2, Un.„ V„ V2, .. ,Vn.2, Vn.„ Z„ Z2>.. , Z„.2, Zn.„ H„ H2, .. Hn.2, Hn4) 

px is a vector that originates from the terms derived with respect to time in (12). 

px = (0, 0, .. ,0, 0, 0, 0, .. ,0, 0, 0, 0, .. , 0, 0, pH„ pH2, .. pHn.2, pHn.,) 

By use of gauss-elimination equation (17) is transformed to an eigenvalue problem 
forH. 
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Matrix A contains of 16 sub-matrices. These are named  A,,  B,,  C,,D,: 

AX BX ct D; 

A, B-  C, D, 2      2       2       2 (18) 

As *3 C3 D3 

A4 B4 C4 D4 

The matrices A, B, C and D contains elements, respectively, for U, V, Z and 
H. The index refers to the equations. 1 for the x-momentum, 2 for y-momentum, 3 
for conservation of mass and 4 for conservation of sediment. When the matrix A has 
been calculated, it is reduced to a triangular matrix except the last submatrix D4. The 
form of the matrix-equation is now: 

'At* Bx*  Ct* Dt* 'if o1 

0    B2*  C2* D2* 

0      0    C3* D3* 

V 

z = -p 
0 

0 

0      0      0    D4* p. fl 

(19) 

The matrices' A,*, B2* and C3* are all upper triangular matrices. It is only 
possible to obtain a solution to equation (19) when H is a solution to the eigenvalue 
problem defined by following equation: 
D4* H = - pH (20) 
(20) is complex in both matrix, vector, and eigenvalue. It is solved by use of standard 
procedures for complex eigenvalue problems. The solution to the eigenvalue problem 
gives n-1 eigenvalues A,,, ..., Vi • Each of the eigenvalues defines a solution to the 
eigenvalue problem, which also give n-1 eigenvectors H, .. H,,.,. 

It is now possible to find the solution that gives the fastest growth rate of 
the bed perturbation that is determined by the largest real part of p{ = -%•„, cf. eq. 
(16). When the eigenvector Hj for the fastest growing mode has been found, the 
solution for U, V and Z are found by using back substitution. 

The calculations are made for several different values of k in order to 
determine the wave number k that gives the largest re 1 part of p and thus the fastest 
growing perturbation. This bar pattern is expected largely to be the bed form that 
actually emerges. 

Another result that comes from the eigenvalue problem is the migration 
velocity, which is: 

_  -Im(p) (21) 
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As can be seen in fig. 3 the simple sediment transport model does not give 
a maximum for the growth factor Re(p). Fig. 4 shows the most unstable bed 
configuration for different values of k. It can be seen that as k increases the bars are 
situated closer to the coastline. 

1 2 
Dimensionless k 

Figure 3 The real part of the growth factor p as a function of the wave number k. 
The simple sediment transport model was used. Hb=3 m, T=10 s, j3 = 2.5° 
and 0h = 10.0°. 

For large longshore wave numbers the bed forms are thus embedded in the 
nearshore region where the longshore current is growing linearly with the distance 
from the shoreline, see figure 4. Under these conditions there is no lower limit for the 
wave length of the most unstable perturbation and the stability analysis cannot predict 
the emerging of a bed topography. 

An explanation for this behaviour is as follows. When the bars are situated 
closer to the coast line, the area of a bar is decreased as k"2, whereby the amount 
of sediment needed for the instability mechanism is reduced with k"2. Close to the 
coast line the zero order velocity profile is almost linear and the sediment transport 
is proportional to the zero order velocity. The sediment transport hereby reduces by 
~ k"1 as the bars are situated closer to the coast line. This gives: 

Re(p) oc k-'/k"2 = k 
This agrees with the result shown in figure 3. 

When the bed load transport model is used a maximum for Re(p) is found, 
see figure 5. The dimensionless wave number k is found to be around 1.0 to 1.2 for 
waves for an incoming angle at the breakerline between 8° and 12°. For lower angles 
the wave number k becomes very small for the maximum of Re(p). For 0b = 0° it is 
impossible to get any results due to the use of a quadratic resistance law which also 
has influence on the results for small angles of 0b. 
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k   =1 k =2 k= 4 
Figure 4 An example of the perturbation h, for three different wave numbers k, 

H„ =3 m, T=10 m,   0 2.5° and Ob = 10.0°. 

Dimensionless k 
1 2 
Dimensionless k 

Figure 5 The real part of the growth factor p and the translation celerity as a 
function of the wave number k for six different angles. The bed load model 
was used. Hb=3 m, T=10 s, p = 2.5° 

Illustrations of the 1. order bed topography, 1. order velocity field and the 
"total" meandering current are shown in figure 6. The orientations of the bars disagree 
with the one seen on the photo in figure 7. On the photo the bars propagate from the 
coastline obliquely in the same direction as the current, the opposite is the case in the 
stability analysis. In another case, illustrated by a photo of Short (1994), the orienta- 
tion of the bed forms agree with the present stability analysis. Johnson et al. (1994) 
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modelled the current and mophological changes around an offshore breakwater for 
obliquely incoming waves. At the downstream side of the breakwater some bars 
developed that had the same orientation as those in the present study. It has not been 
possible to find a final explanation for the determination of the orientation. 

f 
1 

h 
.' ' t 

j"   breaker line ^   breaker line f  breaker line 

Figure 6 An example of the perturbation h, the 1. order current and the "total" (0. 
and 1, order)  meandering current. 0b = 8.0°, k = 1.2, Hb =3 m, T=10 m and 
P = 2.5°. For the meandering current the maximum ofh was set to 2 m. 
scoured area is shown by the light colour 

The 

Figure 7 A  photo of large periodic bottom topographies at the island Sylt, Wadden 
Sea Denmark/Germany, H. Dette (1994). 

Figure 8a shows the dependence on the grain size. When the grain size 
increases the maximum of Re(p) decreases and the wave length of the most unstable 
perturbation increases. 
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The perturbation of the bed modifies the wave field. This influences on the 
radiation stresses and hereby on the hydrodynamics and the sediment transport. A 
comparison between the effects coming from the bed slope, the modification of the 
wave field due to the perturbation and the current is shown in figure 8b. When the 
modification of the wave field due to the perturbation is excluded the lowest curve 
is obtained where the maximum is situated at the same wave number k as for the full 
bed load model. When the effect of the bed slope and the effect of the modified 
wave field are excluded, the maximum for Re(p) is situated at a larger wave number 
k. Here a maximum is obtained in contrast to the simple model. This shows that a 
more refined model for the sediment transport gives a maximum even if the bed slope 
is not taken into account. 
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Figure 8 The figure shows the dependency of the grain size - 8a -, and the stability 

curve when the slope and/or the modification of the wave field are excluded 
- 8b. A: no slope and no modification of the wave field, B: no modification 
of the wave field, C: the full bed load model 

Dimensionless k Dimensionless K 

- Susp. + bed load -«- Bed load only 

Figure 9  Here the suspended load is included, the figure on the left hand side is 
found for 6b = 5.0° and for the figure at the right hand side 0b = 10°. 
Hh=3m,T = 10  m and p = 2.5°. 
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Figure 9 shows the results when the suspended load is incorporated. For 
0b =  5.0° the maximum for Re(k) moves to a bigger dimensionless k, while we get 
the opposite result for 0b = 10°. When the suspended load becomes dominant, it 
moves the maximum of Re(p) to a lower dimensionless k, and the growth rate 
increases. 

For 0b = 10° the effect of a phase lag is shown too. This has a stabilizing 
effect on the growth rate especially with big wave numbers. 

6 CONCLUSIONS 

A linear stability analysis has been used to investigate the formation of large 
scale periodic bottom topographies. In the analysis the effects from the slope due to 
the perturbation of the bed are incorporated. 

When a simple sediment transport formulation is used, taking the sediment 
transport to be proportional to the velocity, a maximum on the stability curve is not 
found, and the instability of the bed forms increases with the alongshore wave 
number. 

The bed slope affects what kind of topography that will emerge and gives 
a spacing between the rips of about six times the width of the breaking zone. By 
including the suspended load this distance decreases for small angles of the incoming 
waves and increases for large angles. The phase lag in the suspended load gives a 
smaller growth rate and a longer length of the bar. 

The modification of the wave field, due to the perturbation, increases the 
growth rate and gives a smaller bar length. 

The stabilizing effects are the slope of the bed, large grain size and phase 
lag in the suspended load transport. The destabilizing effects are the longshore 
current, and the modification of the wave field due to the perturbation of the bed. 
Refraction and diffraction have not been investigated. These mechanisms could have 
an effect on the stability of the bars. 

The resulting topography has been compared to field investigations and 
shows that the orientation of the bars sometimes but not always is the same as in this 
stability analysis. 
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