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Abstract 

Effect of permeability on pressure distribution over the permeable 
surface of a porous medium is investigated. Measured pressure 
distributions comparing impervious and permeable cases are presented. 
Flow of the free fluid over the permeable boundary and flow of the fluid in 
the porous medium are computed numerically, maintaining the interaction of 
the two flow fields through the boundary conditions at the permeable 
surface. Turbulence is modeled by a low Reynolds number k-e model 
including a novel technique to model surface roughness effect eliminating 
the need for wall functions. 

Introduction 

The interaction between waves, currents and the loose boundary at 
the sea bottom is a basic question in the study of sediment transport 
mechanism. In most cases the loose boundary takes an ondulated shape 
with a separating complex flow field on it. The direction and the rate of 
sediment transport is strongly related to the resulting geometry of the loose 
boundary and to the dynamics of the flow over the boundary. 

Sand particles are removed from the loose boundary by the 
tangential and the pressure forces, then hold suspended by the vortex 
structures and carried forward or backward depending on overall flow 
pattern. In order to define the incipient motion of the sand particles and 
explain the sediment transport mechanism, a numerical solution of the flow 
field over the loose boundary is required. However, in such a numerical 
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solution the boundary conditions for velocity and pressure on a permeable 
surface should be defined correctly. 

Two different flow regions can be defined; flow of the free fluid over 
the permeable boundary and flow of the fluid within the porous medium of 
the loose boundary. These two flow fields are strongly interacting. The flow 
of the free fluid over the ondulated surface induces a pressure variation 
along the common boundary of the two flow regions. This pressure variation 
and the traction forces acting on the common boundary excite the flow in the 
porous medium. The velocity, pressure and turbulence along the common 
boundary are affected by both flow regions. 

In flows over a porous medium it is necessary to specify boundary 
conditions on the tangential and normal components of velocity of the free 
fluid at the permeable boundary. There exists an extensive analytical 
literature which describes coupled fluid motions satisfying the Navier-Stokes 
equations in the free fluid flow and some empirical set of equations in the 
porous medium with common boundary conditions at the permeable 
interface of the two flow regions. 

Obviously, some uncertainty exists in definition of a true boundary for 
a permeable material. Therefore, it is usefull to define a nominal boundary. 
In mathematical formulation, a smooth geometric surface is considered to 
represent the nominal boundary along the surface of the porous medium. 
The nominal boundary is located at a distance such that the volumetric 
flowrate between the impervious rough surface and a fictitious surface 
placed at the tip of roughness elements is equal to the volumetric flowrate 
between the fictitious surface and the nominal boundary. In numerical 
computations, hydrodynamic consequences of roughness and permeability 
are simulated on the nominal boundary. 

Experiments 

The experiment reported here is designed to examine the nature of 
the pressure distribution on the nominal boundary of a permeable surface. 
Briefly, there is a two-dimensional steady flow between an impermeable 
rippled surface and a flat test surface opposite to the ripple (Fig.1). The 
ripple geometry is selected to induce a pressure variation on the test 
surface. Description of the ripple geometry is given in numerical model 
section. The test surface is either an impermeable flat plate or the 
permeable boundary of a saturated porous volume. 

Three experimental cases are considered. In the first case the test 
surface is fitted by a smooth solid flat plate. Pressure measurements for this 
case are indicated as "Impervious" on the figures. In the second case the 
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Fig.1  Experimental setup 

test surface is fitted by a sieve secreen and sand material is placed in the 
box indicated as "porous volume" in Fig.1. Hydraulic conductivity of the sand 
is measured to be 1.02 cm/s. Pressure measurements for this case are 
indicated as "Porous I". In the third case the sand material is replaced with 
another sample obtained from a different source. Hydraulic conductivity of 
this material is 1.07 cm/s, almost the same as in the second case. However, 
particle size distributions of the two sand materials are quite different. 
Pressure measurements for this case are indicated as "Porous II". The 
purpose of repeating the experiments with two different sand materials of 
approximately the same permeability is simply to verify experimental 
accuracy. Pressure distributions are measured for each case at about 25 
different flowrates in the conduit. The maximum (centerline) velocity, Um, in 
the conduit is varied between 50 ~ 250 cm/sec. 

The measured pressure distributions at the test surface for the 
impervious and porous cases are shown in Fig.2 for three different 
flowrates. For Um = 95 cm/s, the difference between the pressures of the 
three test cases is negligible. Since the velocity is low, neither surface 
roughness nor permeability can affect the pressure distribution significantly. 
For Um = 159 cm/s, the pressures for the porous cases are less than the 
pressure for the impervious case at locations X > 16 cm along the test 
surface. This pressure drop is due to the surface roughness effect of the 
sand material. When the flowrate is increased to Um = 248 cm/s the effect 
of surface roughness and permeability cancel each other and the resultant 
pressure distributions for the permeable cases are almost the same as the 
impervious case pressure distribution. At this high flowrate there is a larger 
pressure drop due to surface roughness effect of the permeable test surface 
but, permeability allowing flow into the porous medium from high pressure 
points and flow out of the porous medium from low pressure points, creates 
a counter effect to the contraction of flow section by the ripple on the 
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Fig.2 Comparison of pressure distributions along the test surface for 
flowrates Um=95, Um=159, and Um=248 cm/s. 



1774 COASTAL ENGINEERING 1994 

0,   -20- 

'o o0 

-30- 

X   =   28   cm 

ooooo Impervious 
aaaan   PorOUS    I 
A i A A A Porous   I! 

50 

-20- 

-30- 

'00 150 200 
Um   (cm/sec) 

'     "O o °  °„ 
4o  p^ o   o o o 

8   DAqp m o 

S     OA < 

250 

A D r 

X   =   36   c m 

ooooo Impervious 
oDDon Porous   I 
A A A A A Porous   II 

50 100 150 200 
Um   (cm/sec) 

250 

Fig.3 Comparison of pressures at fixed points X=28 and X=36 cm on the 
test surface as a function of flowrate in the conduit. 

apposite side. In this way the pressure drop due to roughness effect is 
compensated by the relaxation introduced by permeability of the test 
surface. 

This behavior can better be observed in Fig.3 where pressures at 
fixed points (x = 28, x = 36 cm) are compared as a function of flowrate. 
Pressure drop due to surface roughness can be recognized for UmS:95 cm/s 
and it is compensated by relaxation due to permeability for Um>190 cm/s. 

Numerical Model 

The flow of free fluid over the permeable boundary and the flow within 
the porous medium are solved simultaneously allowing interaction of the 
flow regions through the boundary conditions at the common boundary. 
Darcy law is assumed to govern the flow in the porous medium. The full 



VELOCITY AND PRESSURE BOUNDARY CONDITIONS 1775 

Navier-Stokes equations are solved in the region of free fluid flow and 
Laplace equation for pressure is solved in the porous medium. 

A useful computational grid for the free fluid region is obtained from a 
conformal mapping between the physical plane (x, y) and the computational 
plane (£, TI) defined by Eqns. (1) and (2) 

x = ^ + cm|[sina(|-^,)ea("')-s.naa-^)e-a(^)] (1) 

Y = TI-TI, - T,2 + cm Ifcosate -4,)eM + cosa^ -^ Je^•'] (2) 

for   0<£<L   ,   0<T|<TI, 

where a = 27t/L,, L = 40 cm,   H = 6cm,   TI, =-TI2 = 12 cm,, £, =0,   £2=L/2 

and cm = 1.023598. For r| = rj-j in Eqns. (1) and (2) the ripple geometry used 
in the experimental setup is obtained. The complete set of governing 
equations for the free fluid region in the computational plane are written as 

iau du du _ dy d?    dy dP     d 
J5t+Uc54+V°an    d^dri    drid£ + dt,(V° aj + &r\ 

du du 

do, dv dot dv 
(3) 

J_dv       dv        dv_dxdP_dxdP   _d_ 
J dt+U,! dl+V° dx\~ dx\dt,    dt,dr\ +dt, 

dv\    d 

®>)   dry 

dv 

du, du du, du 

dt,   dr\     dx\  dt, 
(4) 

d2v|/    d2\|/ 
d^2 + af' 

dy dv 
~dr\~di' 

dy dv dx du 
.3^ aii' 

dx du 
drfd^ 

(5) 



1776 COASTAL ENGINEERING 1994 

a2p  a2p 
= -2pJ 

'dvdy    dv dy^\(du dx    du dx} (da dy    da dy 
d^dr\    dr\ dZ,jydr} 8Z,    dl, dr\J {d£,dr\    dx\dt, 

(6) 

where 

=    P    2, dy      dx dx      dy 
P = — +—k,       uc=u^--v—, vc=v u—^ 

p    3 dr\      dr\ dt,      di, 
•• v+vt, 

U = J 
dx d\\i    dx dy 

v<5£ ^H    dr\ dt,) ' 
v = J 

dy dy    dy dy 
<?£ dx\    dr\dl, 

J is Jacobian of coordinate transformation, vt is turbulent viscosity and k is 
turbulent kinetic energy. In the porous medium the Laplace equation for 
pressure is written as 

a2(p/Y)|a
2(P/Y) = 0 

ax2 
dy2 (7) 

Pressures along the permeable boundary are obtained by integration 
of the momentum equations on the free fluid side and are supplied as 
boundary conditions of equation (7) for the potential flow in the porous 
medium. After solution of the Laplace equation for pressure, the velocity 
components due to porous media flow are computed. Tangential velocity on 
the permeable boundary is assumed to have two components. First 
component is the velocity induced due to the external tangential stress by 
the free fluid (Beavers and Joseph 1967, Saffman 1971, Taylor 1971) and 
the second is the velocity of porous media flow due to tangential pressure 
gradient. These two velocity components are combined to give the "slip 
velocity" at the permeable boundary. 

dx 
(8) 

y=0 

where K is hydraulic conductivity and cs is the slip velocity coefficient. In the 
literature slip velocity coefficient may take values between 0.1 ~ 4. In this 
study it is fixed as unity since the slip velocity has showed no control on the 
pressure distribution over the permeable boundary for the complete range of 
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values reported in the literature. The normal component of velocity is simply 
due to porous media flow and is named as the "seepage velocity" given by. 

v.~K*£> ,9, 
dy 

The slip and seepage velocities are used as the boundary conditions for the 
momentum equations governing the free fluid flow. 

In numerical computation of the free fluid flow a different technique is 
adopted. In Poisson equation for pressure (Eqn.6) divergence of velocity is 
not included, instead, the Poisson equation for the stream function (Eqn.5) 
is solved and velocities are recomputed from the stream function to enforce 
the continuity after solution of the momentum equations. Otherwise 
computations were not converging because of the added degree of freedom 
by the slip and seepage velocities at the permeable boundary. 

Turbulent viscosity is obtained from a low Reynolds number k-e 
model as described in (Aydin and Shuto 1988). This model allows a 
complete numerical solution starting from the boundary, eliminating the 
need for wall functions. When the wall functions are removed, a new model 
for the surface roughness is required. This is accomplished by introducing 
and additional viscosity due to surface roughness (Aydin, 1993). Roughness 
viscosity is defined in terms of a roughness length scale and the velocity 
gradient at the wall, 

M ur =1; — 
Wy=o 

(10) 

and the roughness length scale is given as 

lr=0.4ksfr (11) 

where ks is the equivalent sand roughness height and fr is a function to 
express the turbulence level in terms of the roughness Reynolds number. 

fr = r r^ vr 02) 
[l.-exp(-0.09R°k

6)] 

and 
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R, 
ksu. (13) 

In computations, turbulent viscosity at a point next to a boundary is equated 
to the roughness viscosity if uj < ur. 

Computations and Results 

Pressure distributions for the first experimental case, the impervious 
boundary, are computed by the numerical model described above. 
Computed pressures are compared to experimental data at four different 
flowrates in Fig.4. In general computation and experiment agrees well, 
expect the end points (X = 40 cm). This is due to the uniform flow conditions 
imposed at the end of the computational domain which may be achieved at 
further downstream locations. Before computing the permeable cases, 
effects of surface roughness and permeability are studied separately. 
Pressure distributions on the test surface for Um = 248 cm/s using diffe'rent 
ks values are shown in Fig. 5. This figure indicates that the pressure drop 
along the test surface increases with the surface roughness. Fig. 6 shows 
pressure distributions for the same flowrate using different hydraulic 
conductivity values keeping ks = 0. It is clearly observed that the increase in 
permeability reduces the pressure drop on the test surface. 
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Fig.4 Comparison of computed and measured pressures along the test 
surface for impervious boundary. 
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Fig.5 Pressure distributions along the test surface for different surface 
roghness values. 
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Fig.6 Pressure distributions along the test surface for different hydraulic 
conductivity values. 
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Fig.7 Comparison of computed and measured pressures along the test 
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Fig.8 Hydraulic conductivity as a function of roughness Reynolds number 
along the test surface 
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The roughness model used in this study, as well as other models, 
represents the roughness effect due to surface irregularities. When the 
surface is permeable, the roughness effect will be increased by permeability 
since it allows turbulent fluctuations to enter into pores of the medium. On 
the other hand high turbulence due to free fluid flow near the boundary 
reduces permeability of the surface. 

In this study the effect of permeability on roughness effect is ignored 
and dependence of permeability of a porous boundary to the turbulence 
level is investigated. Numerical model is forced to satisfy the experimentally 
measured pressures along the test surface for variable hydraulic 
conductivity at each computational node. Fig.7 shows a comparison of the 
measured and computed pressures for permeable test surface with variable 
hydraulic conductivity. Hydraulic conductivity values used to fit the 
measured pressures are shown in Fig.8 as a function of roughness 
Reynolds number. In this figure K0 represents the hydraulic conductivity for 
laminar flow conditions. As seen from the figure, hydraulic conductivity is 
reduced by turbulence when the hydrodynamically rough condition is 
reached and the reduction is about 50 % at a roughness Reynolds number 
of 400. However, in order to be able to give an expression of the relation 
between hydraulic conductivity and rougness Reynolds number, the effect of 
permeability on surface roughness should be clarified. 
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