
CHAPTER 112 

STABILITY OF ROCK ON BEACHES 

by 

Gerrit J. Schiereck, Henri L. Fontijn, Wout V. Grote, Paul G. J. Sistermans1 

ABSTRACT 

Stability relations for rock on a mild slope are derived and compared with 
experimental results. It appears that for non-breaking waves the stability on a mild 
slope can be described with existing relations for stability on a horizontal bottom in 
oscillatory flow. For breaking waves, no existing relation can be used and a 
provisional empirical design rule was established. The results can be applied in 
designing outfall protections. 

1. INTRODUCTION 

TOP LAYER 
FILTER LAYER 

Figure 1 Outfall protection 

Pipelines on the sea bottom are usually protected in order to prevent damage by 
anchors or erosion. When a pipeline crosses a beach, it often lays in a dredged 
trench, see Figure 1, is covered with stones including a filter layer and is again 
covered with the original sand. The protection then acts as a last defence in case of 
severe wave attack on the beach. For the design of such a protection, which can be 
seen as an armour layer on a mild slope, no design rule is available at the moment. 
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Much information is available on static stability of rock on steep slopes, as 
occurring at breakwaters and revetments, see e.g. Hudson (1959) or van der Meer 
(1988). Information is also available on static stability in oscillating flow on a 
horizontal bottom, see e.g. Sleath (1978) or Ranee & Warren (1968), while Naheer 
(1977) investigated the stability under breaking solitary waves. For mild slopes 
much is known about dynamic stability, e.g. for sand and pebble beaches, where the 
profile is reshaped when conditions change. About static stability on mild slopes, 
which is a rather unusual combination in coastal engineering, practically nothing is 
known. At Delft University of Technology two studies were done (Sistermans 
(1993) and Grote (1994)) to find a static stability relation for rock on mild slopes 
which can be used as a design rule for outfall protections. 

2. LOAD AND STRENGTH 

Vks 
Figure 2 Orbital velocity and wave friction 

The basic phenomenon in stability under waves on a mild slope, at least under non- 
breaking waves, is assumed to be the shear stress due to oscillatory flow: 

(1) 

with: 

a>a. uH      1 
2    smhkh 

(2) 

fw and ub depend on the wave height, H and period, T. Given a certain wave height, 
the longer the period, the larger the orbital velocity at the bottom, u„, (Figure 2a). 



ROCK STABILITY ON BEACHES 1555 

With fw, the friction coefficient, the relation is opposite: the shorter the period, the 
larger the friction coefficient, see Figure 2b, derived from Jonsson (1966) where fw 

is given as a function of the orbital stroke at the bottom, related to the bottom 
roughness. This is caused by the fact that the boundary layer, (5, see Figure 2a) 
under a longer wave is more developed, leading to a lower velocity gradient, 
causing a smaller shear stress (given a certain velocity). In CUR/CIRIA (1991) an 
expression by Swart is given to describe the relation of Figure 2b: 

fw = exp[ -6+5,2(V«]     ffwmax = 0.3) (3) 

For the stability relation between shear stress and stone dimensions, the critical 
Shields parameter, as adapted by Sleath (1978) for turbulent flow is: 

0.056 (4) 
(Ps-Pw)gd 

d is the equivalent spherical diameter, in this paper approximated with d50, the 
median sieve diameter, which is easily available and differs only a few percent from 
the spherical diameter. Equation (4) is partly based on experimental data by Ranee 
& Warren (1968) from experiments in an oscillating flow tunnel. In this research, 
their results are, as an alternative for equation, (1), (3) and (4), described with: 

= 0.025 [ft]"l (5) 
J*Ag d 

In breaking waves, for the time being, the same mechanism is assumed to work. But 
due to a complete change in the velocity field and the turbulence in a breaking or 
broken wave, it can be expected that some amplification factor on the computational 
results has to be applied to fit experimental data. 

3. EXPERIMENTS 

Set up 

Experiments were done in a wave tank (length 40 m, width 0.8 m, depth 0.9 m) at 
the Laboratory of Fluid Mechanics at Delft University of Technology (DUT). On 
the concrete surface of a slope 1:25, stones were laid with dimensions ranging from 
d50 = 7 mm to 17 mm and densities ranging from 2400 to 2900 kg/m3. The width 
of the sieve curves of the stones (d^/dis) used in the experiments was about 1.5. 
3 to 4 layers of stone were used, in order to ascertain a proper roughness between 
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the stones and the slope. The difference with the geometry of a real pipeline cover, 
which has a filter layer under the top layer, is assumed to be negligible with respect 
to stability of the top layer. 

The stones were laid in coloured strips of 0.2 m (in the wave direction) over the full 
width of the flume. By counting the number of stones displaced, n, after every test, 
the damage S was determined as a percentage of the total number of stones available 
in a strip: S = n * d^o2 / A (%). For every strip a relation between n and the wave 
height at the toe of the slope was established and from these curves, the level S = 
0.5 % was arbitrarily chosen as incipient motion. 

The maximum number of waves in regular wave tests was 750. Irregular waves 
were generated according to a JONSWAP-spectrum; the number of waves was 2000 
in irregular wave tests. The wave heights and spectra were determined at the toe of 
the slope. The water depth at that location varied from 0.7 m for regular waves to 
0.6 m for irregular waves. 

Scale effects 

The flume in the laboratory is considered as a physical reality in itself, not as a 
model of some prototype with a scale 1:X. Computations are made for that reality 
and compared with the experimental results. However, in the end, the relations thus 
found have to be used for prototype circumstances. This is permissible only if no 
scale effects are present in the relations. Sources of scale effects in small flumes 
using water as a fluid, can be the viscosity of the water, the surface stress and air 
entrainment in breaking waves. 
To avoid viscosity effects, the particle Re-number in the Shields-graph (u.cd/c), 
should be more than about 600, indicating that the flow around the stones is 
turbulent. The minimum stone size of 7 mm was chosen to meet this demand. 
Stive (1985) investigated the scale effects in breaking waves on a 1:40 slope and 
found no significant scale effects in wave heights and velocities on the slope for a 
wave height range from 0.1 to 1.5 m. The wave heights in the authors' experiments 
ranged from 0.1 m to 0.35 m. 

4. COMPUTATIONS 

Orbital velocities were computed with the linear wave theory. Although the 
circumstances on the slope are beyond the validity-range of this theory, LeMeliaute 
(1968) already showed that for orbital velocities at the bottom, the theory predicts 
measured values quite well. Figure 3 shows for various locations along the slope 
and wave steepnesses, s, in the authors' experiments, the comparison between 
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ORBITAL VELOCITIES AT BOTTOM 
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Figure 3 Comparison computed and measured orbital velocities in DUT wave flume 

computed and measured maximum orbital velocities at the bottom. The measured 
values are in the upslope direction, since it appeared from the experiments that the 
first movement of the stones is in upslope direction. The agreement between 
computed and measured values is remarkably good. 

The wave heights on the slope were determined, applying the shoaling coefficient: 

_1  

(6) 
K... = 

N 
tanhkh 1 + 

2kh 
sixth 2 kh 

The water depth at the toe of the slope in the flume cannot be considered as deep 
water. Hence the local wave height is computed as: 

H, KsU*H0 Ksh+* 
H- 

sh.Toe 

(7) 

For irregular waves the same procedure is followed, now with respect to a 
significant wave height, Hs, and a peak period of the wave spectrum, TP. 

Tests were done with various stone sizes. For each water depth along the slope, the 
(local) wave height for the threshold of motion for the stone dimensions in a certain 
test, and the corresponding wave height at the toe of the slope were determined with 
the above mentioned relations and compared with the measurements. 
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5. NON-BREAKING REGULAR WAVES 

Jonsson / Sleath Ranee & Warren 
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Figure 4 Wave height at toe of slope for incipient motion with constant T 
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I 
Computations: Experiments: d50 (mm) A (-) 
  Jonsson / Sleath O 7.5 1.7 
  Ranee & Warren A       11.4 1.7 

I i       V       17.5 1.7 
D 7.3 1.9 
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Figure 5 Wave height at toe of slope for incipient motion with constant s = 3% 

Figure 4 shows the results for constant wave period (2 s and 3.5 s). The differences 
between the computation according to Jonsson/Sleath and Ranee & Warren are 
small. The agreement for T = 2 s is quite good. For T = 3.5 s there is a deviation 
for water depths around 0.3 m. The wave steepness for which the threshold of 



ROCK STABILITY ON BEACHES 1559 

motion was determined was 1 % or less, and the corresponding wave appeared to 
be unstable in the flume: the waves fell apart into two separate waves. Figure 5 
shows the stability for a constant steepness, s-r = HT/1.56*T

2
 = 3 % and various 

stone sizes and densities. The difference between Jonsson/Sleath and Ranee & 
Warren is again small for the smaller stones in relatively deep water. For larger 
stones the difference increases. This is caused by the fact that a large stone diameter 
gives a large friction coefficient, fw, which is computed iteratively in Jonsson/Sleath. 

In general it can be said that the assumed mechanism describes reasonably well the 
experimental results. In the following, all computations have been done with the 
method of Ranee & Warren, being simpler than that of Jonsson/Sleath while the 
differences are small. 

6. NON-BREAKING IRREGULAR WAVES 

The stability mechanism in irregular waves does not differ from that in regular 
waves, but it is obvious that the higher waves cause the damage. In this research, 
the irregular wave field is described with a significant wave height and the peak 
period of the wave spectrum. From a first comparison between the results for 
regular and irregular waves, it appeared that, for incipient motion, in regular waves 
the wave height was about 50% higher than the significant wave height in irregular 
waves. Taking the Rayleigh-distribution as basis for the wave height distribution, 
this would mean that the 1 % highest waves are responsible for the incipient motion 
(H1% » 1.5HS). In shallow water, the wave height distribution is going to deviate 
from the Rayleigh-distribution. An expression for this deviation is given by Stive, 
see CUR/CIRIA (1991). This expression is, however, independent of the wave 
period, while in the experiments the difference between regular and irregular waves 
was larger for lower wave steepness. 

A magnifying factor for the significant wave height, K,, is now defined with a lower 
limit 1 and an upper limit depending on the water depth and the wave period: 

HML   ~ KI * HSL 1 + Constant * tanh | 
Hso 

*««. 

1    /-     .   .   *   .(0.14*Z,*tanh(*A) 1 + Constant * tanh  -—- 
[ Hso 

(8) 

*HSL 

HM, is the breaker height according to Miche, see CUR/CIRIA (1991). For the 
constant in K„ a value 0.6 was chosen. The result is a magnifying factor for HSL 

along the slope between 1 and 1.6 depending on the depth and the wave steepness. 
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Figure 6 Regular non-breaking waves, A = 1.7 
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Figure 7 Regular non-breaking waves, A = 1.4 

d50 -7.3 mm, Delta-1.9 

CO 
Q. 
o 
«•         09- 
"5      ' 
CD 

S .,--:p'^-" 
CO 

<n 
X 

0.1 
-''S'^--":"r' 

Legend 

— s-3% 

 s-1% 

O   s-3% 

->•   s-1% 

Computation 

Experiment 

0.2 0.3 0.4 0.5 
Water depth on slope (m) 

Figure 8 Regular non-breaking waves, A = 1.9 

Figure 6, Figure 7 and Figure 8 show the results for non-breaking irregular waves. 
It appears that for all stone densities investigated, the computations follow the trend 
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of the experiments rather well; the influence of the wave steepness, however, is 
underestimated. The constant (0.6) in K, was chosen such that it fitted the 
experimental results for irregular waves with s = 1 %, being a practical lower limit 
for irregular waves. It appears that the representation of an irregular wave field with 
Hs and TP, as used in shoaling computations, combined with the proposed 
magnifying factor, K„ is too simple to describe correctly the whole process. For this 
first round, however, this is taken for granted, since the trend is indicated quite well 
and the final values to be used in the design rule are on the conservative side. 

Note: The use of HM, the local breakerheight according to Miche, seems somewhat 
peculiar in a formula for non-breaking waves. This is however deemed acceptable 
because, in an irregular wave field, there is a very gradual transition from non- 
breaking to breaking, while the mechanism at the point of breaking is not 
necessarily completely different. Moreover, the use of Kr, including HM, has no 
other pretention than being a sensible way of curve-fitting. 

7. BREAKING REGULAR WAVES 

The assumed mechanism for the stability in breaking waves is again the shear stress 
under a wave. Starting with a given wave at the toe of the slope, the local wave 
parameters are computed and from these the stone diameter needed. 
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Figure 9 Computation of stone diameter in breaking wave 
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Figure 9 shows the computed wave heights due to shoaling and the breaker height 
according to Miche. The maximum of these two is used in the computation of the 
diameter, yielding a maximum value along the slope. It can be expected that this 
procedure will underestimate the necessary diameter, since the shape of the wave, 
the velocity field and the turbulence in a breaking or broken wave are unfavourable 
compared with non-breaking waves. Therefore, a second tuning parameter, KB, 
comes in: 

Breaking AJ     uNon-BreaUng (9) 

The diameter that finally results from this procedure is taken as the diameter in 
breaking regular waves. 

Legend 
o Computation 
a Experiment 

WAVE STEEPNESS (%) 

Figure 10 Comparison measured and calibrated values for regular breaking waves 

Figure 10 gives the results of the comparison between computation and experiment, 
in which the above mentioned procedure was performed in a reversed order and 
iteratively (starting with a given diameter, which is the case in a flume experiment, 
computing the local wave height for incipient motion and hence the wave height at 
the toe of the slope). KB = 2 is used in the figure, giving the best fit. 

Here again it can be seen that a larger wave steepness leads to a more stable 
situation (larger wave height for incipient motion, see Figure 10). This can also be 
explained from the way of breaking of the waves. According to the common 
classification, all these waves belong to the spilling type (£ < 0.4, see Battjes 
(1974)). There is, however, a gradual change in breaking characteristics and the 
lower the steepness of the waves in the experiments, the more they showed a 
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plunging behaviour. In a plunging breaker the bottom is attacked by a jet, giving a 
more unfavourable situation compared to a "real" spilling breaker. The energy 
dissipation in a plunging breaker is more concentrated than in a spilling breaker, see 
Figure 11. 

Plunging breaker Spilling breaker 

Energy dissipation 

Figure 11 Energy dissipation in spilling and plunging breakers 

8. BREAKING IRREGULAR WAVES 

With a magnifying factor, K„ for the irregularity of the waves and an amplification 
factor, KB, to take the effect of breaking into account, the stability in breaking 
irregular waves is computed and the results are given in Figure 12. 
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DESIGN CURVE 

Figure 12 Comparison computed and measured values for irregular breaking waves 

In this figure the stability is expressed as Hsc/Ad^o in order to compare it with the 
stability of rock on breakwaters or revetments. Hs0 is a fictitious deep water wave 
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height, derived from equation (7) in order to have an unambiguously defined wave 
height. The nominal diameter (d„50) is used instead of the sieve diameter because this 
is a more practical measure for large stones. The relation between d and dn can be 
taken as an average for normal rock, see CUR/CIRIA (1991): d„ = 0.84*d. 
From Figure 12 the following can be seen: 

The dimensionless parameter H/Ad, computed according to the procedure 
outlined above,  still shows variation with A. This means that either the 
mechanism assumed in the computation is not correct or the use of this 
dimensionless parameter is not allowed. 
The rather scarce data do not fit very well with the computations. 
Typical values of H/Ad for a wave steepness of 3 %, lie around 6 compared to 
2 for revetments with steep slopes. 

For the time being, the lower limit of the experimental results is taken as a 
conservative approach for a provisional design rule: 

H, so 
Ad, 

= 4.5 + 50 * sn (10) 

The tendency of this result is conformable to van der Meer's equation for stability 
on steep slopes, see van der Meer (1988). For a given slope angle, van der Meer's 
equation for plunging breakers gives an increasing stability number H/Ad for an 
increasing wave steepness or a decreasing £. In Figure 13 both relations are given 
for a slope angle 1:25 (this is far beyond the range for which the van der Meer 
equations are valid, but it is just to show the mentioned tendency). 

V 
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BREAKING WAVES 

VAN DER MEER RELATION 

0.4       as       0.6       0.7       0.8       0.9 

BREAKER PARAMETER   XI 

Figure 13 Comparison experimental results with van der Meer's equation 
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9. DESIGN RULE 

The proposed design rule is now to be applied as follows: 

Start with the significant deep water wave height (Hs0), measured or from 
equation (7) and a wave height measured at any relatively deep water location 
Compute the shoaling of Hs0 along the slope with equation (6) using the peak 
period of the spectrum, TP 

Determine HML along the slope with equation (8) 
Compute the necessary diameter along the slope with equation (2) and (5) 
Compute the maximum diameter with equation (10) 

Figure 14 gives the result for Hs0 = 5 m, TP = 10 s and A = 1.65. 
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Figure 14 Design example 

NOTES: 

1 Equation (10) expresses the stability as a function of the wave steepness, s. 
Since the stability is closely related to breaking, it would be more appropriate 
to relate the stability parameter H/Ad to the breaking parameter |. Only one 
slope was investigated (1:25). Using s instead of £ is on the safe side for all 
slopes milder than 1:25, since a milder slope yields lower ^-values leading to 
a more stable situation. 
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In the figure some limits of stone classes are given, which are common in the 
Netherlands. These are not essential, but are presented to show that for a 
practical case, a choice has to be made from material available. 
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10. RECOMMENDATIONS 

The design rule, presented in the previous section, is the best approach available at 
the moment for stability of rock on mild slopes. Conservative choices had to be 
made; improvements are possible. Therefore the following is needed: 

A more complete description of the velocities and shear stresses on the slope 
in irregular waves. This can probably be obtained with a model that describes 
the behaviour of irregular waves on a slope, including bottom friction and 
breaking, see e.g. van der Meer (1990). 
A physical description of the breaker zone itself with a model that includes the 
shape of the waves, the velocity field and the turbulence. This could give more 
and better information on the attack on the slope than is possible with the 
orbital movement according to the linear wave theory. 
More systematic experimental data on stability in breaking waves, including 
other slope angles. In doing so, also an attempt can be made to make a better 
link between the relations in Figure 13, giving a complete picture of stability 
of rock on mild and steep slopes. 

SYMBOLS 

A surface area of coloured strips m2 

ab orbital stroke at bottom m 
d„50 median nominal diameter of material (dI^o=(M5o/ps)°'M)        m 
d50 median sieve diameter of material m 
fw friction coefficient in waves 
g acceleration due to gravity m/s2 

H0 deep water wave height m 
HL local wave height m 
HML maximum local wave height (Miche breaker height) m 
Hs significant wave height m 
h waterdepth m 
Kj magnifying factor for irregular waves 
KB amplification factor for breaking waves 
Ksh shoaling factor 
k wave number (k = 2ir/L)                 1/m 
k, equivalent sand roughness (k, = d50)                   m 
L0 deep-water wave length m 
M mass kg 
n number of displaced stones 
S damage % 
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s      wave steepness (s = H/L0) % 
TP    peak wave period of spectrum s 
ub    orbital velocity at bottom m/s 
a     slope angle of structure - 
A     relative mass density of material (A = (ps-pw)/pw) - 
ps     mass density of material kg/m3 

pw    mass density of water kg/m3 

f     breaker parameter (5 = tan a/\/(H7L0) - 
rb    amplitude of bottom shear stress N/m2 

w     angular frequency (w = 2x/T) 1/s 
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