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ABSTRACT 

Linear and Nonlinear wave forces exerted on a submerged horizontal plate 
are studied using the method of matched eigenfunction expansions for velocity 
potential together with the perturbation technique up to second order. Energy 
damping coefficients are introduced in the formulation to incorporate the effects 
of vortices and wave breaking. The theoretical results are compared with ex- 
perimental data to obtain validity and limits of the second-order solution. The 
theory with proper energy damping coefficients can well simulate the wave forces 
even when wave breaking occurs over the plate. The second-order oscillatory 
wave force is relatively small as compared to the first-order one, while time- 
independent, steady wave force becomes comparable with the first-order one at 
small relative water depth and its direction is always upward. 

1      INTRODUCTION 
Wave interactions with a submerged horizontal plate have been extensively 

studied both theoretically and experimentally. Most of the studies, however, deal 
with linear wave interactions, namely, reflection and transmission characteristics 
of waves from the submerged plate (e.g., Ijima et al., 1970, and Patarapanich et 
al., 1989). These studies concluded that the submerged horizontal plate might be 
one of the promising wave attenuation devices. There is however little information 
available on the characteristics of wave forces exerted on the plate except for a 
work by Patarapanich (1984), especially of nonlinear wave forces. Since wave 
motion over the plate placed at small submergence depth is highly nonlinear, 
higher harmonic generation usually occurs; the second harmonic wave increases 
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significantly over the plate and at the end of the plate the second harmonic 
sometimes becomes greater than the first one (Kojima et at., 1990). It is of great 
interest to study the contribution of the higher harmonic forces to the total wave 
force. The information on these forces and the overturning moment is essential 
in designing such a structure. 

The main objective of this study is to present a theoretical solution of lin- 
ear and nonlinear wave forces exerted on a submerged horizontal plate and to 
understand their characteristics. The solution obtained is valid to second order. 
Numerical results are compared with experimental data to show the validity and 
limitation of the second-order solution. The characteristics of wave forces under 
the extreme condition such as breaking waves are also examined. The study is 
restricted to the two-dimensional cases of regular waves approaching normal to 
the thin plate fixed at various submergence below the water surface. 

2    THEORETICAL FORMULATION 

2.1     Governing Equations 

The nonlinear interaction problem is treated as the water wave boundary value 
problem for the second-order velocity potential since potential flow assumptions 
may be valid. Let us consider the second-order Stokes' wave, with its first-order 
amplitude (0, wave number k, and angular frequency a, incident upon a sub- 
merged horizontal plate from the positive x direction, as shown in Fig. 1. Since 
the fluid motion may be assumed to be irrotational, incompressible and inviscid, 
the governing equations for this problem are as follows: 
Laplace equation, 

^+^ = ° (1) 

the kinematic free surface boundary condition, 

the dynamic free surface boundary condition with the Bernoulli constant Q, 

d§        .     1 {(d§\2     (d§\2 

dt+9(+-2{{^)   +^jj    )=Q onz-Cfrt) (3) 

and the kinematic no-flux condition on the plate surface and sea bottom, 

-Q^ = 0 on  z = -h2, -hd, -h   (4) 
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Figure 1    Fluid regions and definition sketch. 

2.2     Solutions of first and second order 

To obtain solutions for the first- and second-order velocity potential, the ve- 
locity potential, water elevation and Bernoulli constant are expanded by the per- 
turbation approach in terms of power series in a small parameter e (= k(0) and 
the combined free surface boundary condition is applied on the still mean water 
level with help of the Taylor expansion. Then, the velocity potential $(x,z,t) 
can be given by 

<&{x,z,t) = f-Re 
ka 

iW €(j)\   (x, z) exp(iat) 

+e2{(j>(o\x, z) + 4>f\x, z) exp{i2at)} + • • • (5) 

in which <j>\   (x, z), <fr0   (x, z), (j>2  (x, z) are nondimensional complex functions (here- 
after referred to as a potential function) and the subscripts 0, 1 and 2 indicate 
the degree of harmonic components and the indices (f) and (2) denote the first- 
and second-order solutions, respectively. 

The potential functions <^j  , (!)     J,(2)     J2) 
^0 in the regions (1), (2) and (4) with the 

free water surface can be expressed in terms of a power series as 

9ii (x, z) = Yl iC• exp(kmx) + Din exp(-ktnx)} Z(k,nz) (6) 

oo 

OO       oo 

m=0 p=0 
(?) 
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tf\x,z)    =   Cf£ + ^F 

1315 

+ £ {^Fexp (^x) + D^ exp (-^) } cos ^z 
n = l 

/l 

oo       CO 

(8) 
71 = 0 J> = 0 

where C\f, D\f, c\f, D^ indicate unknown coefficients of 0(e«), the subscript i 

"  ' ' '"      'genfunction Z(k\^z) is written denotes the corresponding fluid regions, and the eige 

by ' 

,(«)   s _ COS fc^Z+ />,,) 
Z(A: 

cos kil h, 
(9) 

The eigenvalues &,-„  can be found from the following dispersion relationship. 

M!^ = _4«)/lj tan kWhi (. = 1,2,4    ? = 1,2) (10) 

When n = 0, it becomes an imaginary number (&-Q   = «'£;'•   ) and a real number 

when n / 0. ilmp(s, z) and   H    (x, z) in Eqs.  (7) and (8) are given by 

\(krn) A;. A(/cra, kp 
mP(x, z) =  —-—Qmp(x)Z(kmpz) + —-==-Qmp(x)Z(kmpz) 

IJ-ly^mp) t^lX^mp) l^l\kmp) 

n:p(x, z) = ^-Q'mr{x)Z{k'mpz) + J^LQ-mp(x)Z(k-mi 

(ID 

where 

^%mp\^)  — ^m^p €Xp[/CmpICJ + _L/7nX/p eXp(      KmpX) 

^vmp\X)  ~ ^m^p exPv^mp^J T ^p^m exP\'^mpx) 

Q*mp(x) = CmC; exp(*4px) + DmI?; exp(-^px; 

CPM = C^exp^a;) + C;Dmexp(-klpx] 

Wm, kp) = ^ (3r2 + 2kmkp + k2
p) , r(kp) = 1 (r2 + fc2) 

A(Aim, Kp) = — (31   — 2kmkp + AipJ 

l^i{kmp) = 4F + kmpta,nkmph ,    /J2(^P) = &mP 
tan(*4p/i) 

^i(^mp) = 4F + &mp tan £mp/i ,    /i2fe.P) = &„p tan(^p/i) 

(12) 

(13) 

(14) 



njmp "'m- ~f~ "'p  i h         —   b ^mp '      n'm — h 

"•nip =  Km + kp   , Knp ~ Km. -k" 
V 
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(15) 

The index * designates the complex conjugate of the variables. Note that <j>0 (x, z), 
given by Eq.(8) and representing the steady component of the second-order poten- 
tial function, contributes to neither the second-order water surface displacement 
nor wave pressure exerted on the plate. The interpretation of the solution for 
<f>2 '{x, z) is discussed elsewhere (Kojim et a!, 1994). 

The first- and second-order solutions for the fluid region beneath the plate are 
assumed to have the following form: 

4q)(x,z)   =   cifX- + D^ 

+    J2 \C3qn •exp(z/„s) + D3
q

n exp(-vnx)} cosisn(z + d) (16) 

in which vn = mr/h3 and q — 1,2. 
The unknown coefficients in the first- and second-order solutions should be 

determined by satisfying the no-flux conditions along the vertical faces of the plate 
as well as flow continuity conditions over the vertical planes separating the fluid 
regions. Instead of using a conventional technique employing the orthogonality 
of the eigenfunctions (Ijima,1971, and Massel, 1983), a "collocation" method of 
matching is applied in determining unknown coefficients in the expansions. A 
detailed explanation of the procedure is presented by Kojima et al. (1994) and 
Yoshida et al. (1990). 

2.3     Linear and Nonlinear Wave Forces 

2.3.1     Expressions for dynamic wave pressures 

The dynamic pressure due to wave action against a submerged horizontal plate 
can be obtained from the unsteady Bernoulli equation. Like the velocity potential 
$>(x,z,t), the dynamic pressure p(x,z,t) may be expanded in terms of power 
series in e, and substituting the determined velocity potential into the Bernoulli 
equation and collecting terms of each order in e yield the non-dimensional dynamic 
pressure p(x, z,t) to second order in the following form. 

Pi^l=pW(x,z,t) + epm(x,z,t) 
pg(o 

= Re[p<i1\x,z)exp(iat) + e{p(
0
2)(x,z)+p(2)(x,z)exp(i2at)}] (17) 

where 

P\1\x,z) = -t41) (18) 
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J2) ti'(x,z) -2,42) 
4k a2 

(i) 

dx 
+ i? (20) 

In the above equations p\ (x, z),p^'(x, z),p2
2 (x, z) are non-dimensional dynamic 

pressure where the superscripts (1) and (2) denote the first- and second-order 
dynamic pressures, respectively, and Q^ is the Bernoulli constant. 

2.3.2    Vertical wave force 

The vertical wave forces exerted on a horizontal plate located at an arbitrary 
depth z can be obtained by integrating wave pressures in regions (2) and (3) from 
—b to b in the direction of x 

Fz 
fz(z,t) 

(*>i)=^T4=   I    {p3(x,Z,t)-p2(x,Z,t)}dl 
pg(0B      J-b 

(21) 

By using Eq.  (18) through Eq.  (20), the normalized wave forces fz(z,t)/pg(0B 
can be expressed as 

Fz 
h(z,t) 
pgCoB 

Re[{F£l(Z)-F£l(Z)}eMi«t) 

+ e (*&) " F%1(*)) + {F%(z) - F%(z)) exp(i2<rf)}] (22) 

Since the first-order term is well-known, only the second-order ones are given as 
follows: 

FZ2o(z) = l_ P2o(x,z)dx = Y.Y. [a(km)kl)Z{k2mp )R* 
m.=0 p~0 

+a(km,k;)Z(k2mpz)R*mi] + Q& (23) 

F^(z) = f*p%(x,z)dx 

4ka2 

C   C*        C      •3 

"30 J30 + ^ E {AM} {c;m - D;m} z(vmZ) 
m. = l b2 

+-^Y.iMvn)}{c3n-D3n}z(, 
n = l 

+ EE Wm \ R*nmZ{vnmz) - R*nmZ{unmz) 
?i=l m = l 

+ 1(2) (24) 

F&{z) = f &\z, z)dx = ^ £ ^1 {<% + B%} Z(k^z) 
"o  2k^'b 
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* J  "{km: ftp) • 

F 

E^—^   I   A. I /CJJJ. j ftp I                 .                         /\ ( /CJ^J, . K<p J      .    .   I 
/ J \           77       r~-ftmpZ(k2mpz) H             ,-r N    ^m,p^\^2mpz) f 

m=0p=0  (   f^lK^mp) ^l(^mp) ) 

+ ]C S \a(km, kp)RmpZ(k2mpz) + a(km,kp)RmpZ(k2mpz)j 
m=0 p=0 

F%(z) = £bpg\x,z)dx 

-2. \{-C$ + D®} +t^H {Oil" + DfJ} Z{unz) 
oil l n3 

~~   ^CiQ + ~C30J2Mvn){Csn-D3n}Z(vnz) 

nmZ)        t^nm^ \^nmZ) | 

»3     «3 • 

+ J2Y1 V^m \RnmZ(l 

wh iere 

C2mC2p + D2mD2p 

Rmp -   ' 

(m = p = 0) 

M^*2mp) 
~2k*~b   \°2m02p + lj2mIJ2pS m ^ p 

mp 

exp(-2k2mb) [c2mD'2v + C2pD2m]        (m = p / 0) 

2^2mp" 

J2p + L'2pV2n 
m = p = 0 
m =/= p 

**      =   ^ 
"2iynmb 

•{c3nc;m + D3nD;m} 

RZ 

• exp(-2i/„&) {C3n£3*m + C^AiJ   (n = m 

m) 

_ A\k2mp 

K       A(ynm) 

-wr y- \C2mC2t, + D2mD2p) 

exp(-2kmb) {C2mD2p + C2pD2m}   (m = p) 

oT-~T   {C2mD2p + C2pD2m}    (m / p) 

r. r    \C3nC'3m + DinDzrn} 

R•r = I   B(k2p,k2m) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 
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-**7177 

nxp{-2vnb) {C3nD3m + C3mD3n}   (n = m) 

B[^n) {C3nD3m + C3mD3n}      (n + m) 
2unmb 

(34) 

In the above equations, A(k2rnp), B(k2p, k2m), Z(k2pz), Z(vnz), • • • can be given 
for each variable in the following forms. 

A(k2mp) = 1 - exp(-2k2mpb) 

B(k2p, k2m) = exp(-2k2pb) - exp(-2k2mb) 

, (2) , _ cosk2p\z + h2) 

COSfcjp ft 

Z{ynz) = cos vn(z + hd) 

(35) 

2.3.3     Horizontal wave forces 

The horizontal wave forces exerted on the horizontal plate can be obtained by 
integrating over the plate thickness from —hd to — h2. The wave force coefficient 
F* — fx{z,t)/pg(oD can be expressed as 

Fx = J^D = Re KF^ix) ~ ^"(X)) eMiat) 

+ e { (*£> (x) - F{Z (x)) + (F$l (x) - F%2 (x)) exp(^)}] (36) 

Fj(^(x),  Fxio(x), and   F%   (x) can be given by the following equations: 

*$k*) = -2i E {C\n exp^s) + A(n' exp{-k$x)} Y• (37) 

?(2) F%O(X) = E E {«(*m, *;)Qrmp(x)y^ + a{km, £;)Q*rap(x)Y,;p}+Q(2)(38) 
m=0p=0 

*&(*) = -2« E {Cl2) exp(42)^) + D<£ exp(-k^x)} Yi2) 

-2% EE(^ mi n'pJ 

= 0p=Q   I   A^ll^mpJ 
^ 2" / -* mp    i $%rnp V1^ / •* "ip 

l^li^mp) 
0 y x J i mp 

m~0 p~0 
(39) 

where 
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1.0 (m = p=0) 

2cosk*mp(h3 + D/2)Smk*mpD/2 

k*mV
D cos kmph 

1.0 

2 cos k*mp(h3 + D/2) sin k*lpD/2 

k*„D cos k* „h 

yC2) = 2cos42)(A3 + J/2)sm42)J/2 

knD cos &» /i 

_ 2 cos A;my(fe3 + iJ/2) sin kmpD/2 

^mp-Ls COS Kjmpti, 

Y„. 

1.0 

2 cos Ajmp(/i3 + £>/2) sin kmpI)/2 

m = p / 0 
m ^ p 

[m = p ^ 0) 

m = p = 0 

(m = p) 

{m^p) 

(40) 

(41) 

(42) 

(43) 

(44) 

The subscript z is 1 and 4, denoting regions (1) and (4). Since the water depths in 
regions (1) and (4) are same, the wave numbers km, kp are equal in these regions. 

2.4     Incorporation of the effects of energy damping 

To incorporate the effects of energy losses due to vortices generated at the 
plate ends and wave breaking over the plate, the energy losses are assumed to be 
expressed in terms of flow resistance proportional to square of local flow velocity 
and to local flow acceleration. The pressure continuity condition along the vertical 
plane at x — b may then be written as 

1 1 
-(Pi ~ Pi) = ~-CD\VI\VI 
P 2 

C, 
dv1 

(45) 

where C'D and CM are energy loss coefficients. By using the Lorentz concept, 
linearizing a nonlinear term with respect to time and expressing the dynamic 
wave pressure and velocity in the velocity potential yield the following boundary 
condition for the potential continuity. 

dx    dx dx 
(46) 

o      • 4    9   Cor p = K—JI:TCD 
•J7r a-'n h 

(47) 
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3 Hydraulic Experiments 

Two-dimensional hydraulic experiments are performed to measure the vertical 
and horizontal wave forces as well as the dynamic pressure along the upper and 
lower surfaces of the plate using pressure transducers. Fig. 2 illustrates the 
devices used for these measurements. For horizontal wave forces, as shown on 
the left-hand side of the figure, two pairs of strain gages were mounted on four- 
steel cylinders attached to the horizontal plate. The horizontal forces may then 
be obtained through a calibrated strain-force relationship. For vertical wave 
forces, pressure transducers were mounted on both the top and bottom surfaces 
of the plate, as shown on the right-hand side of the figure. Integrating pressure 
distributions along the plate yields vertical wave forces exerted on the plate top 
and bottom surfaces, and adding these forces gives the resultant vertical wave 
forces. The height and period of incident waves are varied to investigate the 
effects of wave breaking over the plate on wave forces. 

4 RESULTS AND DISCUSSIONS 

4.1     The first- and second-order wave pressures and forces 

The components induced by the nonlinear interactions of the second-order 
theory include a time-independent, steady component and second-harmonic com- 
ponent which constitute the second-order wave pressure and force. Fig. 3 shows 
comparison between the computed and measured pressure amplitude distribu- 
tions along the top surface (upper figure) and the bottom surface (lower figure) 
of the plate. The lines indicate the computed results and the marks the measured. 
When energy damping is not taken into consideration, i.e. CJJ = CM — 0-0, an 
agreement between the computed and measured pressure distributions is poor, 
especially for the first harmonic pressure component, as shown in the left-hand 
side of Fig. 3. This may thus be due to the effects of energy losses caused by 
the generation of vortices at the two ends of the plate. With proper energy loss 
coefficients, which are 0.8 for Cp and 0.0 for CM in this case, both 1st- and 
2nd-order solutions agree quite well with the experimental results, as seen in the 
right-hand side of Fig 3. However, the computed 2nd-order steady component 
somehow deviates from the measured. 

The amplitude of the first- and second-order non-dimensional oscillatory wave 
forces is shown in Fig. 4, where the thin lines indicate the computed results 
without consideration of energy damping and the thick lines with consideration 
of energy damping. By comparing the measured wave forces with the computed, 
an agreement between them is remarkably good when the submergence depth 
is not so small and the wave height is fairly small. The effects of energy loss 
indicated by the thick lines affect the normalized vertical force Fz more than the 
normalized horizontal one Fx. The computed second-order oscillatory forces F^2\ 
indicated by the broken line, are also consistent with the measured, indicated by 
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Figure 2    Schematic description of measuring devices for horizontal and vertical 
wave forces. 
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Figure 3 Comparison between computed and experimental wave pressure along 
the top and bottom surfaces of the plate with and without energy damping con- 
sideration. 
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Figure 4 
a submer: 

Comparison between computed and measured wave forces exerted on 
^ed horizontal plate with (o/h = 0.03 and (0/h = 0.06 . 

the black circle. Both the vertical and horizontal second-order oscillatory forces 
are small compared with the first-order ones F^ and decrease monochromatically 
with increase in h/L 

The right-hand side of Fig. 4 shows the result of a higher incident wave 
amplitude ((o/h = 0.06), where wave breaking takes place over the plate when 
the relative water depth is greater than h/L = 0.14. The theory with greater 
CD value can simulate the total wave forces fairly well even when wave breaking 
occurs over the plate. Although the theory overpredicts the 2nd-order oscillatory 
force, the actual values become quite small. Thus the first-order or linear wave 
forces dominate the total wave forces. 

4.2       Variation of wave forces due to the submergence 
depth 

Fig. 5 shows the variations of the normalized Ist-order vertical and horizontal 
wave forces with relative water depth for three different submergence depths. As 
the submergence depth h2/h decreases, the computed results disagree not only 
quantitatively but also qualitatively with the measured, as depicted in Fig 5. The 
theory can fairly well predict the value of the maximum vertical and horizontal 
wave forces up to h2/h = 0.15. At a smaller submergence depth the theoretical 
values fluctuate with the variation of relative water depth, but the experimental 
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tjh=0.04, Blh=2.00, Dlh=0.10, CB=1.0, C^O.O yh=0.04, Blh=2.00, Dlh=0.10, CD=1.0, C^O.O 

Figure 5    Variations of the first-order    Figure 6 Variations of the second-order 
wave forces with submergence depth.        wave forces with submergence depth. 

ones somewhat flatten over the whole range of relative water depth. The theory 
also overpredicts the amplitude of the second-harmonic force, as depicted in Fig. 
6. 

4.3      Variation of time-independent, steady wave forces 

Another important wave force for design of a submerged horizontal plate is 
time-independent, steady force. The variations of normalized vertical steady 
forces for three different incident waves are delineated in Fig. 7, where a. rect- 
angular mark indicates the force exerted on the plate's top surface, a triangular 
mark on the plate's bottom surface, and a black circle the resultant force. When 
an incident wave height is relatively small, say (o/h = 0.03, upward steady forces 
act on the plate's bottom surface, while downward steady forces act on the plate's 
top. Since the upward forces are almost always greater than the downward forces, 
the resultant steady forces become uplift ones. The net steady forces exerted on 
the plate become comparatively large in magnitude at smaller relative water- 
depth, decreasing almost monochromatically with the increase in relative water 
depth, and at larger relative water depth the forces come closer to zero. As an 
incident wave height increases, the normalized steady forces exerted on the both 
top and bottome surfaces become smaller and the direction of the forces exerted 
on the top surface changes to the upward at smaller relative water depth. 
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Figure 7      Variations of the steady wave forces with relative water depth for 
different incident wave heights. 
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5    CONCLUSIONS 

The following conclusions are obtained from this study: 

1. Linear and nonlinear dynamic wave pressures and forces exerted on a sub- 
merged horizontal plate are explained through the non-transient, finite am- 
plitude wave theory that is valid to second order. 

2. The theory with proper energy damping coefficients can well simulate the 
wave forces even when wave breaking occurs over the plate. The second- 
order wave forces are relatively small as compared to the first-order ones. 

3. For the plate placed close to the water surface, the computed wave forces 
are qualitatively inconsistent with the measured; the computed first-order 
oscillatory wave forces fluctuate with relative water depth, while the mea- 
sured vary almost linearly. 

4. When wave height is relatively small, an upward steady force acts on the 
plate bottom surface, while a downward steady force acts on the plate top 
surface; the direction of the resultant force depends on their magnitude. 
The steady net uplift force becomes comparatively large in magnitude at 
smaller relative water depth, decreasing almost monochromatically with 
increase in relative water depth. 
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