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ANALYSIS OF NONLINEAR COEFFICIENTS OF REFLECTION 

AND TRANSMISSION OF WAVES PROPAGATING 

OVER A RECTANGULAR STEP 

Wudhipong Kittitanasuan1 and Yoshimi Goda2 

Abstract 

A mathematical model for nonlinear wave propagation over a rectan- 
gular step is formulated based on the boundary element method. The wa,ve 
profile computed by this model gives a more realistic wave profile than that 
of linear wave theory. The calculation of the height of nonlinear waves is 
studied, and as a results of the study the reflection and transmission coef- 
ficients are computed based on the technique which considerd the higher 
harmonic components in the computation of wave height. The solutions of 
these coefficients are presented and compared with laboratory experiments. 

1    Introduction 
A land reclamation has been recommended to provide an artificial shallow 

ledge around its periphery in order to mitigate adverse effects on the environ- 
ment. This shallow ledge can be considered as a rectangular step placed in finite 
depth water. A breakthrough of knowledge of the transformations of waves on 
this marine structure is necessary so that we can design and construct all related 
structures properly. Transformations of waves on a rectangular step were origi- 
nally studied by Lamb (1932), who solved this kind of problem by applying basic 
continuity requirements at the point of discontinuity. Up to now, Bartolomeusz 
(1958), Newman (1965), Mei and Black (1969), Ijima (1971), etc., have proposed 
various solutions for the prediction of wave reflection and transmission coeffi- 
cients.   Most of these solutions were derived based on linear wave theory.   In 
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many applications, however, it is the waves of large amplitude which are of pri- 
mary importance. It is because the large amplitude waves exercise vast influence 
on the aquatic environment, owing to their strong movements of water particle. 

As illustrated by Ohyama and Nadaoka (1991) and Kittitanasuan et al. (1993) 
waves on the step exhibit highly nonlinear behavior exemplified by the enhance- 
ment of the higher harmonic components, and therefore, the effect of these non- 
linear components should be considered in the computation of the coefficients of 
wave reflection and transmission of rectangular step. In this study, an attempt 
is made to provide the solutions of wave reflection and transmission coefficients 
based on the nonlinear computation. 

2    Mathematical Formulation 

2.1     Governing Equation 

The nonlinear boundary value problem based on the velocity potential theory 
is formulated by assuming that the fluid is inviscid and incompressible, and the 
fluid motion is irrotational. The two-dimensional continuity equation in the fluid 
domain ft can be written as follows : 

d2cj>      d2(j> 
0     (in    ft) (1) 

where (j> is the velocity potential, x is the horizontal axis, and z is the vertical 
axis taken upward the mean water level. 

Figure 1: Definition sketch 

2.2    Boundary Conditions 

Along the solid boundaries,   Sh,   S„, and Sv sketched in Fig. 1, the boundary 
conditions are formulated as shown below. 

= 0      (on    Sh) (2) 
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^ = 0     (on    S,) (3) 
oz 

^ = 0      (on    S„) (4) 
ox 

For the incident boundary, Sa, at the left-hand side of Fig. 1, the velocity 
normal to this boundary is equal to the moving velocity of a wave paddle. 

dcj>     d(j> 

~Yn=TX
=U     (°n    Ss) (5) 

where U is the moving velocity of a wave paddle, which is calculated according 
to the wave maker theory for a given wave height and period. It should be noted 
that the depth-dependent velocity computed from the orbital velocity of water 
particle can also be utilized as the velocity U. 

Two free-surface boundary conditions must be satisfied; the first condition 
is the kinematic boundary condition Eq. (6), and the second condition is the 
Bernoulli equation Eq. (7) with the assumption of constant pressure everywhere 
on the free surfao e. 

~-r)cos/3    (on    5/) (6) 

• + U(iE)  +(ir)  \+9V = 0   (on   Sf) (7) 2 [ydn'      yds 

where 77 = drj/dt, <f> = d<j)/dt, g is the acceleration of gravity, n and s show the 
directions of normal and tangent vectors respectively, and /5 is the angle between 
the normal vector and the vertical axis. 

Both of the free surface boundary conditions are nonlinear and are applied on 
the free surface, the elevation of which is not known a priori. 

In order to simulate wave motions for a long duration, an appropriate bound- 
ary condition has to be introduced at the vertical boundary Se, at the right-hand 
side of Fig. 1 so that the waves can pass through the boundary without undergo- 
ing significant distortion and without influencing the interior solution. A variety 
of methods have been developed to achieve the non-reflectivity at the boundary 
for wave propagation problems. Among various methods proposed, use of the 
Sornmerfeld boundary condition appears most appropriate. In this study, we 
shall utilize the Sornmerfeld boundary condition at the boundary Se; therefore, 
the boundary condition at Se can be defined as : 

^ ld(f> I <M ^ 
di = ~cm     (on 5e) (8) 

where C is the phase speed of the wave, and is approximated with that derived 
by the linear wave theory. 
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3    Numerical Results 

3.1 Propagating Wave Profile 

A study of wave deformation on the step was made through the numerical 
analysis by the present model and experiment. A numerical flume composed 
of 105 elements on the free surface and 63 elements on the bottom and lateral 
boundaries was created. The water depth was set at 0.376 m in front of the step 
and 0.113 m on the step, the step height of 26.3 cm was utilized. A wave period 
of 1.74 s was utilized in the computation. On the free surface, the element size 
of 20 cm was used in the deep water region and 10 cm was used in the shallow 
water region; these element sizes were equal to i/15.3 and i/17.9, respectively. 
A time step of T/16 were utilized in the computation. The spatial profile of wave 
propagation is computed by the present model and is plotted in Fig. 2. We can 
see from this figure that when waves enter into the shallow zone, the wave height 
increases, and the wave crest becomes much sharper than the wave trough, and 
the secondary crest is developed. The location of this secondary crest on the wave 
profile changes gradually as the wave propagates into the shallow water zone. 

3.2 Comparison of Numerical and Experimental Results 

In order to verify the results of the present model, a laboratory experiment 
was conducted in a 17 m long wave flume, equipped with a computer controlled 
piston-type wave generator. A rectangular step of the same height 26.3 cm as 
used in the numerical computation was installed in this flume. At the end of the 
flume, a flat plate of 2.0 m long was installed with a slope of 1/10. On the top 
of this plate, a wave absorber was placed to reduce wave reflection at the end 
of the flume. A wave period of 1.74 s was utilized for this experiment. A single 
wave gage was used to measure time-history wave profiles at 4 measuring points, 
at the distances of 1.0 m offshoreward from the tip of the step, and 1.0 m, 2.0 m, 
and 3.0 m inshoreward from the tip of the step. 

The wave profiles computed by the present model are compared with the 
experimental results for four different locations as mentioned above. The com- 
parisons are shown in Figs. 3. In the comparisons of wave profiles about 20 wave 
cycles were employed in order to have stable wave profiles. The profile of waves 
computed by the present model illustrates similar wave profiles in the both re- 
gions, in front of the step and on the step. The secondary wave crest is also well 
simulated having a similar shape compared with the experiments. Therefore, it 
is clear that the present model can accurately predict the wave profile of wave 
propagation over the rectangular step. 

Both results have indicated that the wave profile on the rectangular step is 
different from that of sinusoidal waves; i.e., the wave crest is much sharper than 
the wave trough, and a secondary crest is developed. 

3.3 Higher Harmonic Components 

The effect of finite amplitude on the amount of energy transferred to higher 
harmonic components of waves on the step was numerically and experimentally 
investigated. For this analysis, the water depth was set at 0.376 m in front of 
the step and 0.113 m on the step.   The wave height was varied at three levels, 
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Figure 2: Wave propagating profile 
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Figure 3: Comparison of wave profiles 
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while the wave period was fixed at 1.74 s. From the results of wave profiles by 
numerical model and experiment, the FFT analyis are made to computed the 
amplitudes of all frequency components. In order to seperate the transmitted 
waves from the reflected waves at the end of the flume, the resolution technique 
introduced by Goda and Suzuki (1976) is employed. Then, the potential energy 
of the first, second and third harmonics are computed. In Fig. 4, the ratios of 
maximum energy of the second and third harmonics to that of the first harmonic 
are plotted against the relative wave height, the ratio of the height of incident 
waves Rin to the water depth on the step h2. The relative energy is found to be 
0.2~0.4 for the second harmonic and 0.01~0.09 for the third harmonic. Therefore, 
the energy tranferred to higher harmonic components is very significant compared 
with that of the first harmonic. 
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Figure 4: Relative energy of higher harmonic components 

4    Analysis of the Height of Nonlinear Waves 

4.1     Conventional Methods 
The reflection of water waves is known to associate with every problem of wave 

and structure interaction. In order to estimate wave heights of incident and re- 
flected waves, we need to have an information of reflection coefficient, or the ratio 
of reflected to incident wave heights. Up to now, many techniques have been pro- 
posed by various researchers, Healy(1953), Thornton and Calhoun (1972), Goda 
and Suzuki (1976), Morden et al, (1976), Mansard and Funke(1980), and others 
for the estimation of wave reflection. The method introduced by Healy is based 
on a measurement of wave profile with a single wave gage which is traversed over a 
distance of more than a half wave length. The methods of Thornton and Calhoun, 
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Goda and Suzuki, and Morden et al. are based on a simultaneous measurement 
of wa.ve profile at two positions on a line parrallel to the direction of wave prop- 
agation. Meanwhile, the method by Mansard and Funke employs three-points 
measurements of the wave profile. 

The first method to be described herein is based on the assumption that the 
total energy is equal to the summation of the energies of incident and reflected 
waves. The method is later referred as the method (a) in the calculation of wave 
height of experiments. The formulation of this method can be summarized as 
follow : 

i^h + Er, = \pg(Hl H2
r.) = (1 + K}}) -pgHi (9) 

where the subscripts "in" and "r/" refer to the incident and reflected waves 
respectively, and Krj is the reflection coefficient. This reflection coefficient is es- 
timated as the ratio of the amplitude of the foundamental component of reflected 
waves to that of incident waves which are computed by utilizing the resolution 
technique of Goda nd Suzuki (1976). 

From Eq. (9), the incident wave height can be computed as 

Hi, 

inhere 

8E 4(£i + E2) 

\\pg(l + K?f)      \\pg(l+K?f) 
-[{EJi + (E2),} (10) 

(Ei), 
F 1       n/2 

l+K rf 

(E,)i 
j? i        n/2 

l+K 7T>   E2 = -pgJ2(<il + bl) 
rf 

and E1 and E2 are the energy calculated from all fourier components of the 
first and second wave gages, respectively, a; and 6; are the amplitudes of sine 
and cosine terms obtained form the Fourier analysis of recorded wave profiles, 
respectively. The subscripts 1 and 2 represent the first and second wave gages, 
respectively. 

The second method, to be referred as the method (b), is the method intro- 
duced by Goda and Suzuki (1976) for the calculation of wave heights of incident 
and reflected waves of irregular waves. The method is based on two main assump- 
tions. The first one is that the energy of composite waves is represented with the 
sum of the energies of individual wave trains. The second one is that the propor- 
tionality of representative wave heights to the square root of wave energy holds 
for such composite wave too, regardless of the directions of individual wave trains. 
In general, the basic concept of the approach is similar to that the first method, 
except that the energy is estimated from the wave height of zero-crossing method. 
The wave height of incident waves of this method can be computed as 
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Hin =       • {Hi + H2) (11) 

where Hi and H2 are the average wave heights computed by the zero-downcrossing 
method of the first and second wave gages, respectively. 

4.2    Method by Kittitanasuan et al. (1993) 

In the calculation methods of wave heights of incident and reflected waves de- 
scribed above, the reflection of waves is treated as a single value of the reflection of 
fundamental component, but the harmonic components of incident and reflected 
waves are not given appropriate consideration. As illustrated by Kittitanasuan 
et al. (1993), the second and third harmonic components play an important role 
on waves propagating in the shallow water. Therefore, these harmonic compo- 
nents should be considered in the calculation of the height of waves exhibiting 
nonlinear behavior. In this study, the method proposed by Kittitanasuan et al. 
for the calculation of wave height when waves contain enhanced higher harmonic 
components will be reviewed. The basic concept of this method is the conserva- 
tion of energy density over a range of frequencies. The energy is considered to 
preserve within the range of major frequency components, i.e. the first, second 
and third harmonic components. In this method, the reflection of each harmonic 
component is treated individually. That means the energy density of incident 
and reflected waves are computed from the summation of energies of all resolved 
components of incident and reflected waves, respectively. In the resolution of in- 
cident and reflected components, the technique introduced by Goda and Suzuki 
(1976) is utilized. 

According to this method, the wave height is calculated by converting the 
energy of all resolved incident and reflected components as shown in the following. 

where 

^ = 2,/^    ;    H;, = 2xp± (12) 
v pg V pg 

l /„» ! /max 
Ein =  7.P9    Y,   (a•)?       ;        Erf  = ~pg    Y,   K/).? (13) 

Z i=/mi» Z i = /mi» 

in which (ain)t is the amplitude of a resolved component of incident waves and 
(arf)i is that of reflected waves. /mjn and /max are the minimum and maximum 
frequencies corresponding to the resolution technique. 

Use of the whole energy is made to minimize the effect of energy spread- 
ing around the harmonic frequencies by the FFT analysis. In fact, the energy 
of frequency components outside the three consecutive frequencies around the 
harmonics was less than 5% in the present analysis. 

By knowing these wave heights, the reflection coefficient can be calculated as 
follow : 
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(14) 

The transmission coefficient, Ktr, can also be calculated as the ratio of the 
representative incident wave height on the step to the representative incident 
wave height in front of the step. 
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Figure 5: The comparison of computed wave heights 

The three methods, methods (a), (b) and method by Kittitanasuan et al. (1993), 
were applied for the experimental data on the step. The water depths were set 
at 0.376 in in front of the step and 0.113 m on the step. A wave period of 1.74 s 
are utilized. The comparison of results of these three methods are illustrated in 
Fig. 5. The wave height computed by the method by Kittitanasuan et al. give a 
slight fluctuation of wave height along the shallow zone, and meanwhile the other 
two conventional methods give considerable fluctuations of wave heights. Among 
the three methods, it is evident that the method proposed by Kittitanasuan et 
al. yields the smallest fluctuation of the wave height on the step. Therefore, 
this method will be utilized for the computation of wave height through out the 
present study. 

If we compare the wave heights computed from the methods (a) and (b) with 
that of Kittitanasuan et al. (1993), the method (a) is seen to under-estimate, and 
the method (b) tends to over-estimate the wave height. In the partial standing 
wave system, the maximum and minimum vertical displacements are results of 
the superposition of the profiles of the incident and reflected waves. When the 
wave height is measured directly by these maximum and minimum displacements 
as in the zero-crossing method, there is a possibility of over-estimation of the 
wave height. 
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The fluctuation of the wave heights computed by the two conventional meth- 
ods was investigated. A relatively high reflection of waves from the wave absorber 
at the end of rectangular step is considered to be the reason of the fluctutation. 
The maximum wave reflection coefficient computed at all measuring points is 
found to be 0.26. The variation of wave height shown in Fig. 5 is considered to be 
corresponding to the wave height envelope in the partial standing wave system. 
Therefore, the wave length estimated by the wave height envelope was examined 
to comfirm the assumption. The estimated wave length is 1.80 m, and this length 
corresponds to the wave length computed from the dispersion relationship of lin- 
ear wave theory which is 1.79 m for this case. Therefore, we can conclude that the 
fluctuation of wave heights computed by the two conventional methods is caused 
by the reflection of waves at the end of rectangular step. 

5     Reflection and Transmission Coefficients 

5.1     Coefficients of Nonlinear Wave Reflection and Trans- 
mission 

The numerical model based on the boundary element method described ear- 
lier is used to compute the profile of wave propagating over a rectangular step. 
The free surface boundary was discretized into 104 elements, 36 elements in the 
deep water side and 68 elements in the shallow water side. Besides the free sur- 
face boundary, there were 63 elements on the bottom and lateral boundaries. 
The element size on the free surface is selected to include the first three major 
harmonic components in the resolution of reflected waves. This element size is 
ranged between L/18.1 to L/16.1. Three levels of water depth ratio q, the ratio 
of water depth on the step to the water depth in front of the step, were setup. 
The computations were conducted for 45 cases, 15 cases for each water depth 
ratio q. Three values of the relative wave depth on the step h2/L0, 0.025, 0.05 
and 0.1, are utilized in the computations. The incident wave height is varied 
from 1% of water depth on the step to 26% of water depth on the step for the 
maximum case. A time step of T/16 is used for all the computations. After ob- 
taining time-history displacement of all nodal points, the wave height of incident, 
reflected and transmitted waves are computed by using the technique proposed 
by Kittitanasuan at al. (1993). Because of the spatial variation of wave heights 
on the step, the reflection and transmission coefficients are computed based on 
their average values. 

The reflection coefficients of a rectangular step computed by the present model 
are illustrated in Fig. 6. The reflection coefficients computed by the analytical 
solutions derived by using Ijima's technique, are also included in these figures. 
The reflection coefficients computed by the present model give nearly the same 
values as those computed from the analytical solutions for g = 0.5 and 0.3. For 
q = 0.1, the reflection coefficients computed by the model give smaller values than 
those computed from the analytical solution for hi I'L0 less than 0.05. From these 
figures, it is seen that the incident wave height has a rather small effect on the 
reflection coefficients. 

The transmission coefficients of waves propagating over a rectangular step 
computed by the present model are exhibited in Fig. 7. The transmission co- 
efficients computed by the present model give nearly the same values as those 
computed by the analytical solution for the water depth ratio q of 0.5 and 0.3. 
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However, the coefficients by the present model yield lower values than those of 
the analytical solution for q = 0.l. From the results of these transmission co- 
efficients, the coefficients increase as the incident wave height increases for the 
relative depth h2fL0 less than 0.05. However, the effect of this wave height is 
quite small. 
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5.2     Comparison of Reflection and Transmission Coeffi- 
cients with Experimental Data 

Laboratory experiments were conducted to verify the reflection and transmis- 
sion coefficients computed by the present model. The wave flume installed with 
a rectangular step of 26.3 cm high was used in these experiments. The water 
depth was set at 0.376 in in front of the step and 0.113 m on the step, the water 
depth ratio q is equal to 0.3. Comparisons between the reflection and transmis- 
sion coefficients by the present model, fjima's solution, and the experiments were 
made for two different cases of wave period. For the first case, a wave period of 
1.74 s was utilized. In the comparison of the coefficients shown in Fig. 8, both 
fjima's solution and the present numerical model show an identical prediction of 
the reflection coefficient Krj which almost agree with the experimental results. 
For the transmission coefficient Ktr, the result from the present model gives a 
better agreement with the experimental result than that of fjima's solution. 

For the latter case, the water depths were 0.376 m offshoreward and O.f 13 m 
inshoreward from the tip of the step and the wave period was 1.3 s. In the com- 
parison of the reflection coefficient with fjima's solution and experiments shown 
in Fig. 9, the reflection coefficient computed from the present model and fjima's 
solution are almost the same. They are in agreement with the experimental data, 
with the exception of under-prediction for the wave height ratio, Hin/h2, less 
than 0.2. In the comparison of transmission coefficient with Ijima's solution and 
experiment, the result of the present model shows a better agreement with the 
experiment than that of Ijima's solution. 

6     Conclusions 
Analysis of the coefficients of nonlinear wave reflection and transmission has 

been made through the present numerical model and experiments, and major 
conclusions can be described as follows : 

1. The numerical model utilizing the boundary element method has been con- 
firmed to accurately predict the profiles of nonlinear waves propagating over 
a rectangular step, as demonstrated by comparison with experimental data. 

2. Waves propagating over a rectangular step are found to exhibit highly non- 
linear behavior exemplified by the enhancement of the energy of the second 
and third harmonic components. 

3. A representative wave height based on the assumption of the conservation 
of energy density is proposed for a situation in which higher harmonic com- 
ponents maintain a significant amount of wave energy. This definition pro- 
vides a consistent estimate of wave heights on a rectangular step, where the 
conventional definitions produce a considerable fluctuation of wave heights. 

4. The wave reflection and transmission coefficients computed by the model 
of nonlinear wave propagation over the step are close to the coefficients 
computed by the solution of Ijima (1971) with the exception of the water 
depth ratio q equal to 0.1. For this case of water depth ratio, the coefficients 
computed by the model yield smaller values than those of the analytical 
solutions. 
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5. The effect of finite amplitude on the reflection and transmission coefficients 
of wave propagation over the step is found small as long as the energies of 
higher harmonic components are taken into account. 
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