CHAPTER 83

Stability of High–specific Gravity Armor Blocks

Masahiro Ito¹, Yuichi Iwagaki¹, Hiroshi Murakami²
Kenji Nemoto³, Masato Yamamoto³ and Minoru Hanzawa³

Abstract

The stability coefficient of the well–known the Hudson formula, K_{mp}, has been established by many laboratory tests for various types of armor blocks with a range of specific gravity 2.16–2.47 representative of normal concrete. Design manuals for coastal structures do not describe the adoption of high–specific gravity armor blocks for use in field construction. To examine the effect of specific gravity on stability of Tetrapods, then a laboratory test was conducted by using Tetrapod models of different weights which are composed of five values of specific gravities. Temporal changes of damage ratio arranged test conditions that satisfy the Hudson formula do not coincide among each other, depending on wave period and specific gravity. The effect of the specific gravity on their stability is discussed. As a result, it is found that the relationship between the stability and the specific gravity is considerably affected by the surf similarity parameter and Reynolds number.

Introduction

The stable weight of armor units which are used in the cover layer of groins, breakwaters and wave absorbing works is evaluated by the Hudson formula (1959). The Hudson's stability coefficient of armor blocks made from a normal concrete with specific gravity of about 2.30, such as Tetrapod and Dolos, have been determined on the basis of laboratory tests. These tests have been performed using a wide range of experimental conditions for wave height, wave period, and structure slope, using regular waves. As for the use of the armor blocks on beaches and coast lines, there are the following problems and needs:

¹ Professor, Department of Civil Engineering, Meijo University, Shiogamaguchi 1–501, Tempaku–ku, Nagoya 468, JAPAN.
² Doctor Course, Department of Civil Engineering, Meijo University.
³ Nippon Tetrapod Co. Ltd.
armor blocks, that is to say, the maximum weight of Tetrapod as an armor block is 784 kN (80 tf) at the present time, but this weight becomes unstable for wave heights over 9 m for seaward slopes of 1 on 4/3 of typical breakwaters.

(2) When large scale construction equipment such as floating cranes or derrick barges are difficult to move the place such a far detached-island, then small size and more stable armor blocks have to be used.

(3) Construction site with limited storage space for armor blocks.

(4) Armor blocks in a corner or head of breakwaters, groins or wave absorbing works receive the complex wave action due to the combined wave-flow induced due to waves. Then, thus parts a weak point in armor blocks and are easily broken.

(5) To hold the natural beauty of beaches, coastlines, and harbors, smaller and stable armor blocks are required.

For these problems and needs, high-specific gravity armor blocks are considered more suitable. These armor blocks are smaller than the same weight units made from normal concrete. They are more stable against waves. Also it is possible to reduce structure size by using these armor blocks.

A manufacturing method for producing high specific gravity armor blocks is made possible by mixing a heavy stone, or crushed or grained iron ore such as pyrite into the concrete. The "heavy stone" concrete reaches specific gravity of about 2.7–2.8. In the iron ore concrete mixture, the specific gravity becomes greater than 3.0. Such high-specific gravity armor blocks have been already put to a practical use in Japan.

Previous investigation of the high-specific gravity armor blocks, Zwamborn (1978) discussed the effect of specific gravity as the ratio of armor unit volume to wave height based on the past laboratory data that had been performed using rubble-stones of different specific gravity by Kydland and Sodefjed, and dolosse of different specific gravity by Gravesen and Sørensen. Zwamborn reported that by rearranging some test data with dolosse of different specific gravities (2.4, 2.75 and 3.05), the dimensionless wave height, \(\frac{V}{H^3} \cot \theta \), based on block volume, \(V \), wave height, \(H \), and slope angle of armor layer, \(\theta \), is proportional to the specific gravity in water to \(-3.0\), \(-3.0\) and \(-4.0\) power for 1, 2, and 5 percent damage, respectively. But in the Hudson formula, its exponent value is constant \((-3rd\, power)\) and well accepted. The authors (1992a, 1992b, 1994) have been carrying out the laboratory study using Tetrapod models of various sizes and specific gravities in order to investigate the effect of specific gravity on the stability for waves. On the basis of the tests results, this paper discusses the effect of specific gravity, surf similarity parameter, and Reynolds number as a function of the block-size and wave characteristic. Recently, Takeda et al. (1993) discussed the relationship between stability and specific gravity, based on the laboratory tests using high-specific gravity armor blocks. He pointed out that the wave period considerably affects the stability-specific gravity relationship.
Thus, investigations on the stability of high-specific gravity armor blocks have been not insufficient up until the present time. Design manuals for coastal structures do not describe the adoption of high-specific gravity armor blocks for use in field construction. The effect of the specific gravity on armor unit stability, therefore, must be further investigated.

Advantages of high-specific gravity armor blocks

The effect of the specific gravity on the resistance against wave action is possible to be calculated using the Hudson formula. Assuming that the Hudson's stability coefficient K_D is a constant for Tetrapod (8.3), the slope angle of armored structure is a constant, the unit weight of normal concrete w_c is 22.54 kN/m3 (2.3 tf/m3), and the unit weight of water w_w is 9.8 kN/m3 (1 tf/m3), then, we can obtain the ratio of the design wave height for high-specific gravity armor block, H/H_c, to the change of the relative specific gravity against the normal concrete, $S_r (=w_r/w_c)$, from the Hudson formula assuming that both blocks are the same size (l_B=const.). Where w_r, w_c, and w_w are the unit weight of any specific gravity armor units, normal concrete, and water, respectively. The effect of S_r on H/H_c, the resistance against wave action is shown with a solid curve in Fig. 1. The results show the relative block weight W/W_c of high-specific gravity to normal concrete, which is also shown with a broken line curve in Fig. 1. Here H and H_c are the design wave height of any specific gravity and normal concrete, respectively. It can be seen from this figure that H in the armor blocks of specific gravity $S_r=3.0$ is possible to resist about 1.5 times wave height, H_c, for the normal concrete of the same size. However, this finding holds only when K_D-values are the constant though the specific gravity ranges.

Laboratory test

To examine the effect of specific gravity on stability of Tetrapod, models of different weight were used, composed of five different values of specific gravities (1.82, 2.30, 2.77, 3.40, 4.27). A total of 21 different Tetrapod models were used. The range of Tetrapod models used varied between a vertical height of l_B=3.29-16.6 cm and a weight of $W=0.27-22.85$ N (27.7-2329.6 gf). The sizes and weights of Tetrapod models used in the laboratory tests are listed in Table 1. Model weights on each row (A, B, C, D, and E) within this table are obtained for each specific gravity range.
Table 1. Specific gravities, sizes and weights of Tetrapod models

<table>
<thead>
<tr>
<th>Marks of model</th>
<th>Class No. of specific gravity</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>Design wave height at 1% damage (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>1.62</td>
<td>2.20</td>
<td>2.77</td>
<td>3.40</td>
<td>4.27</td>
<td></td>
</tr>
<tr>
<td>W (g/l)</td>
<td></td>
<td>106.4</td>
<td>58.9</td>
<td>27.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>9.64</td>
<td>6.68</td>
<td>4.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W (g/l)</td>
<td></td>
<td>372.7</td>
<td>117.8</td>
<td>55.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>12.24</td>
<td>7.72</td>
<td>5.98</td>
<td>4.14</td>
<td>3.08</td>
<td></td>
</tr>
<tr>
<td>W (g/l)</td>
<td></td>
<td>951.8</td>
<td>294.4</td>
<td>141.8</td>
<td>68.5</td>
<td>34.2</td>
<td></td>
</tr>
<tr>
<td>W (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>16.83</td>
<td>10.48</td>
<td>7.72</td>
<td>5.69</td>
<td>4.79</td>
<td></td>
</tr>
<tr>
<td>W (g/l)</td>
<td></td>
<td>2329.5</td>
<td>720.3</td>
<td>354.5</td>
<td>174.1</td>
<td>69.4</td>
<td></td>
</tr>
<tr>
<td>W (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>14.15</td>
<td>10.48</td>
<td>7.72</td>
<td>5.69</td>
<td>4.79</td>
<td></td>
</tr>
<tr>
<td>W (g/l)</td>
<td></td>
<td>1811.0</td>
<td>885.4</td>
<td>435.2</td>
<td>218.6</td>
<td>109.2</td>
<td></td>
</tr>
<tr>
<td>W (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>8.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W (g/l)</td>
<td></td>
<td>388.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Wave flumes to minimize the multiple wave reflection

Fig. 3. Breakwater model armored with Tetrapods of two-layer
Table 2. Experimental conditions

<table>
<thead>
<tr>
<th>Waves</th>
<th>Water depth (cm)</th>
<th>Wave height (cm)</th>
<th>Period (sec)</th>
<th>Wave steepness Ho/Lo</th>
<th>Tetrapods</th>
<th>Specific gravity (\omega_w/\omega_e)</th>
<th>Weight (gf)</th>
<th>Vertical height (cm)</th>
<th>Breakwater</th>
<th>Front slope of cover layer</th>
<th>Wave operation time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50, 60</td>
<td>5~40</td>
<td>1~3</td>
<td>~0.14</td>
<td>1.82, 2.30, 2.77</td>
<td>3.40, 4.27</td>
<td>34.2~2329.0</td>
<td>3.08~16.60</td>
<td></td>
<td>1:4/3</td>
<td></td>
</tr>
</tbody>
</table>

by giving \(K_d=8.3\) (in 0<Damage ratio<1%), \(\cot \theta=4/3\), \(\omega_w=9.8 \text{ kN/m}^3\) (1 tf/m\(^3\)), and given a constant Hudson formula design wave height. The design wave height of the models in each row of Table 1, becomes nearly equal, despite difference in specific gravity.

As shown in Fig. 2 the wave basin was divided into the seven flumes, each having a free water zone of 2.5 m in front of the wave paddle. Model breakwaters used in the stability test were constructed within every other flume. The control flumes had wave absorbing net-mats, which were set on a slope of 1 on 10 used to minimize the multiple wave reflection which takes place between wave paddle and breakwater model in normal flumes. In the laboratory test, regular waves were generated continuously on the Tetrapod model for a total of about 1,500 waves under no-overtopping conditions. The 1,500 waves are equivalent to prototype wave action of about 4 hours for a wave period of 10 sec. Wave flume B was constructed with a geometry to increase wave height. Each Tetrapod model was constructed randomly in two layers, on a slope of 1 on 4/3 as shown in Fig. 3. Laboratory test conditions are summarized in Table 2. The damage progression of Tetrapod models was observed continuously by a 8 mm Video-camera. The damage rate, defined as the ratio of the number of blocks that moved to the total number of armor blocks in the two layers, was measured with a display playing back the Video.

Test results

A temporal damage change of Tetrapod models attributed to the difference of specific gravity based on test data, is shown in Fig. 4. The damage to the Tetrapod models of each different specific gravities should be similar to each other. These Tetrapod models (A-3, A-4, A-5) are listed the same row of Table 1. The design wave height of these armor units is nearly equal. However, these damage curves differ due to specific gravity. As to a reason for the difference,
Fig. 4. Temporal damage changes due to the difference of specific gravity

Fig. 5. Temporal damage changes due to the difference of wave period

Table 3. Damages of detached breakwaters, groins, and seawall with Tetrapods due to storm waves in Japan

<table>
<thead>
<tr>
<th>Locations of port and harbour in Japan</th>
<th>W (tf)</th>
<th>T (m)</th>
<th>Damage ratio (%)</th>
<th>$H_{2/3}$ (m)</th>
<th>K_o</th>
<th>R_*</th>
<th>E</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamana</td>
<td>3</td>
<td>13</td>
<td>5.0</td>
<td>5.6</td>
<td>64.6</td>
<td>6.7E+06</td>
<td>4.3</td>
<td>Typhoon 7219</td>
</tr>
<tr>
<td>Hamada</td>
<td>20</td>
<td>13</td>
<td>50</td>
<td>8.0</td>
<td>23.6</td>
<td>1.6E+07</td>
<td>3.6</td>
<td>Depression, Jan. 1971</td>
</tr>
<tr>
<td>Simoda</td>
<td>8</td>
<td>12</td>
<td>30</td>
<td>5.0</td>
<td>14.4</td>
<td>9.3E+06</td>
<td>4.2</td>
<td>Typhoon 7010</td>
</tr>
<tr>
<td>Sizodu</td>
<td>16</td>
<td>12</td>
<td>30</td>
<td>5.0</td>
<td>7.2</td>
<td>1.2E+07</td>
<td>4.2</td>
<td>Typhoon 7020</td>
</tr>
<tr>
<td>Miyazaki</td>
<td>13</td>
<td>14</td>
<td>50</td>
<td>4.0</td>
<td>4.7</td>
<td>9.6E+06</td>
<td>5.4</td>
<td>Typhoon 7123</td>
</tr>
<tr>
<td>Miyazaki</td>
<td>9</td>
<td>14</td>
<td>50</td>
<td>4.0</td>
<td>7.4</td>
<td>8.3E+06</td>
<td>5.4</td>
<td>Typhoon 7119</td>
</tr>
<tr>
<td>Miyazaki</td>
<td>5</td>
<td>14</td>
<td>50</td>
<td>4.0</td>
<td>11.8</td>
<td>7.1E+06</td>
<td>5.4</td>
<td>Typhoon 7119</td>
</tr>
</tbody>
</table>
considerations must be given to the fact that stability is affected by the specific gravity. Selecting identical wave heights from the test data in the same size Tetrapod model, a temporal damage change is shown for each wave period in Fig. 5. Damage curves, generally, must be similar to each other regardless of the difference in wave periods. Hudson's (1959) stability coefficient is independent of wave period. But from Fig. 5 it is recognized that stability becomes a function of the wave period.

From field data, we can investigate damage ratio, significant wave height, and block weight of Tetrapod. The technical report by Takeyama and Nakayama (1975) reported on damage of failure of coastal structures by large waves in Japan. These field data are listed in Table 3. The field data includes the effects of oblique incident waves, deflection waves, and scour in or around the toe of breakwater slope. The damage ratios shown in this table, then, are considerable large (range from 30% to 50%). Hudson's stability coefficient in this table is obtained by converting wave height to equivalent significant wave height. Regular waves were converted based on the equation, \(H = 1.5H_{1/3} \). This equation follows the equations proposed by Fan et al. (1983) and Tanimoto (1985) as

\[
H = 1.4H_{1/3} \quad \text{(Fan et al.)} \tag{1}
\]

\[
H = (1.5 \pm 0.37)H_{1/3} \quad \text{(Tanimoto et al.)} \tag{2}
\]

The evaluated surf similarity parameter \(\xi \) and Reynolds number \(R_e \) are also listed in Table 3.

![Fig. 6. The relationship between \(K_p \)-values and specific gravity in two types of damages](image)
Effect of specific gravity on stability

The rocking only (no-damage) and the 0–1% damage are selected from the laboratory test data. Fig. 6 shows these data which show the relationship between Hudson's stability coefficient, K_D, and the specific gravity in water, S_r^{-1}. In this figure, the K_D-values scatter wildly for the difference in the specific gravity in water. The effect of the specific gravity on stability (rocking only and 0–1% damage) can not be clearly established from this figure. In the Hudson formula, the stability coefficient K_D should be constant because it should considerably depend on the shape of armor units. Therefore, the stability coefficient must be independent of the change of specific gravity. But K_D-values scatter wildly for the different S_r^{-1} values as shown in Fig. 6. Then the Hudson formula may not satisfy the test data.

Theoretical discussion

As above discussed, the effect of the specific gravity on the stability disagrees with the Hudson formula. As this reason it is considered that many factors affect Hudson’s stability coefficient, including effects due to wave steepness, relative depth, Reynolds number, drag coefficient, acceleration of wave motion etc. as described by Hudson (1959).

Reviewing the Hudson formula, the stability coefficient K_D is expressed by;

$$K_D = \frac{w_riH^3}{W(S_r-1)^3\cot\theta}$$

where, W is the weight of armor unit, w_i is the unit weight of armor unit, H is the design wave height, $S_r (=w_i/w_w)$ is the specific gravity of armor unit, w_r is the unit weight of armor unit, w_w is the unit weight of water, θ is the angle of structure slope measured from horizontal in degrees, and K_D is the stability coefficient varying primarily with the shape of the armor units, degree of interlocking, damage rate, etc.

The behaviors of armor units is affected by slope angle, wave breaking, wave runup, and rundown, and is sensitive to the surf similarity parameter ξ;

$$\xi = \frac{\tan\theta}{\sqrt{H/L_o}}$$

where L_o is the wave length in deep water.

Hudson (1959), Dai and Camel (1969), and Sakakiyama and Kajima (1990) have pointed out that the stability of armor units is affected by the Reynolds number related the scale of laboratory tests. The Reynolds number is expressed
using the velocity of wave motion and a characteristics length of the armor block as

$$R_e = \frac{\sqrt{gH(W/w)}}{v}$$

(5)

where \(v \) is the kinematic viscosity, \(g \) is the acceleration due to gravity. Rewriting Eq. (3) using Eqs. (4) and (5), the stability coefficient \(K_D \) is expressed as follows:

$$K_D = \frac{R_e^2}{\xi^4(S_r-1)^3} C_R$$

(6)

where

$$C_R = \frac{L_0^2 v^2}{g} \left(\frac{w_r^5}{W^3} \right) \tan^5 \Theta$$

(7)

From Eq. (6), it is shown that the stability coefficient \(K_D \) is proportional to the \(-3\)rd power of the specific gravity in water, the \(-4\)th power of the surf similarity parameter, and the \(2\)nd power of the Reynolds number.

Stability and Surf similarity parameter

Fig. 7 shows the relationship between \(K_D \)-values and the surf similarity parameter for the test data and the field data listed Table 3. In this Figure, the \(K_D \)-

![Fig. 7. The relationship between \(K_D \)-values and surf similarity parameter of test data and field data](image)
Fig. 8. The relationship between K_D-values and surf similarity parameter for each specific gravity.
values agrees well with the solid curve expressing the relationship of $K_D \propto \xi^{-4}$ in Eq. (6). The relationship between the K_D-values and the surf similarity parameter for each specific gravity are shown in Fig. 8(a)-(e), respectively. From these figures, the relationship between the K_D-values and the surf similarity parameter agrees well the solid line indicating the relationship of $K_D \propto \xi^{-4}$. Fig. 9 shows the relation
of ξ to K_D arranged together from Fig. 8(a) to Fig. 8(c) using the specific gravity as a parameter. Fig. 10 shows the relationship between the stability coefficient and specific gravity in water. This figure was obtained by rearranging Fig. 9 taking the surf similarity parameter as a parameter. From Fig. 10, it can be seen that the stability coefficient decreases with increasing specific gravity in water dependent on $K_D \propto (S_r - 1)^{-3}$, as indicated in Eq. (6). From Fig. 10, stability is affected by the surf similarity parameter, and increases with decreasing the surf similarity parameter.

Sawaragi et al. (1983) pointed out that Iribarren's number reaches a minimum value around the surf similarity parameter of $\xi=3$ due to the occurrence of wave-armor unit resonance on the basis of the laboratory tests of rubble mound breakwaters. Losada (1990) discussed the effect of the surf similarity parameter on the stability function, $\varphi = 1/(K_D \cot \theta)$, by rearranging laboratory test data for various armor units. Then he pointed out that the stability function increases inversely proportional to decreasing surf similarity parameter. These findings are contrary to authors results as above discussed. The discrepancy between the authors and Losada may cause the reason that the range of the surf similarity parameter used and the size of armor unit model is not in agreement.

Stability and Reynolds number

It can be considered from Eq. (6) that the stability coefficient K_D is affected by the Reynolds number. Then, the relationship between the Reynolds number and the K_D-values of the zero damage test data and the field data listed in Table 3, is plotted in Fig. 11. This figure is also plotted with the dark circle indicating Tetrapods only from the paper by Simada et al. (1986), who investigated the stability of Tetrapods, Dolosse, and Koken-blocks. Theses armor units are made from normal concrete ($w_o/w_w=2.30$). The armor blocks had a weight range of $W=0.16-484$ kN ($16 \text{ gf} - 49.39 \text{ kgf}$), and were tested in the medium and large wave tanks. It is shown from Fig. 11 that the K_D-values increase rapidly with increasing Reynolds number, up to $R_e=10^5$ which corresponds to small and medium test scales in the range of Reynolds number $R_e=8 \times 10^3 - 10^4$. Over this value the K_D-values gradually reach a constant. The K_D-values fit well with the solid line indicating the relation of $K_D \propto R_e^2$. The K_D-values beyond $R_e=10^5$ deviates from the trend depicted by the solid line. Such changes in K_D-values may be caused by scale effects. This has been indicated by Dai and Camel (1969) and Shimada et al. (1986). A wider range of scales and numerous test data are needed to further the understanding of the affects of specific gravity and the surf similarity parameter as they related to K_D-values and the Reynolds number.

Conclusions

The effect of the specific gravity on the hydraulic stability of Tetrapod is examined on the basis of numerous laboratory test data. These data were obtained using the total of 21 different models composed five values of specific gravity;
1.82, 2.30, 2.77, 3.40, and 4.27. The discussion includes test and field data reported by another researchers. Conclusions drawn from the results obtained in this study are as follows:

(1) Hudson's formula does not include the effect of wave period. Then Hudson's stability coefficient must be independent of wave period. But this coefficient is considerably influenced by wave period.

(2) Trends are not seen for the relationship between K_D-values and specific gravity. But by arranging the relationship as a function of the surf similarity parameter, it is found that the K_D-values decrease with increasing surf similarity parameter, where $K_D \propto S_r^{-4}$.

(3) The relationship between the K_D-values and the specific gravity in water is shown by the relation, $K_D \propto (S_r-1)^3$, when the surf similarity parameter is taken into account. The K_D-values decrease with increasing specific gravity.

(4) K_D-values from the test data correspond well to the 2nd power of the Reynolds number within a range of Reynolds number between $R_e=8 \times 10^2$–10^5. In $R_e \geq 10^5$, the K_D-values gradually reach a constant as Reynolds number increases. Therefore the stability of high-specific gravity armor blocks, is affected significantly by scale effects.

It should be remarked that the conclusions of (1), (2), and (3) are results that are discussed on the basis of the data of small and medium test scale included the scale effects.

Acknowledgement

The authors would like to thank Mr. George F. Turk, Research Hydraulic Engineer of U.S. Army Coastal Engineering Research Center for proofreading the draft paper. We also grateful to the undergraduate and graduate students of Department of Civil Engineering at Meijo University for their kind assistance in the laboratory test.

References

