
CHAPTER 71 

Steep wave diffraction by a submerged cylinder 

J. T. Aquije Chacaltana & A. F. Teles da Silva 

Abstract 
The steep wave diffraction by a fixed circular submerged cylin- 

der is numerically simmulated as a completely nonlinear time do- 
main evolution from an initial condition. Attention is focused on 
two aspects of the problem. The first is a study of the perturbation 
introduced by the cylinder on the wave field; the second is a study 
of the hydrodynamic forces on the cylinder due to the waves. 

Introduction 

We study the diffraction of steep waves on a fixed, submerged 
circular cylinder in deep water; being particularly interested in the 
hydrodynamic forces induced by the waves on the cylinder and the 
disturbances produced by the cylinder on the wave field. 

The problem of a cylinder held fixed beneath waves field was 
first studied by Dean (1948) in the context of gentle waves in deep 
water; Dean finds, to the linear approximation, that incoming waves 
are not reflected and the only disturbance produced by the cylinder 
on the waves is an uniform phase delay. Ogilvie (1963) extend the 
method of Ursell(1950) to study some related problems of wave- 
body interaction and shows, in the linear approximation for the 
problem of a restrained circular cylinder, that the hydrodynamic 
force components oscillate in quadrature with the wave period, have 
the same amplitude and a phase difference of ~; a second order, 
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steady vertical force component is calculated from the first order 
potential, but the steady horizontal force component is found to be 
zero. Mehlum (1980) gives a first order potential solution for a re- 
strained cylinder under waves which is very easy to compute. Salter 
et al. (1976) measures forces on a submerged circular cylinder and 
finds that mean horizontal forces are quite small and come to be 
negative for steeper waves. Chaplin (1984) makes experiments with 
a submerged cylinder under waves finding no wave reflection, even 
for the highest waves; it is also found that the phase lag is smaller 
than predicted by the linear theory for Keulegan Carpenter, Kc, 
numbers smaller than 2. Vada (1987) calculates the second order 
oscillatory forces on a cylinder of arbitrary cross section; for the 
case of circular cylinders and Kc numbers smaller than results agree 
well with Chaplin's (1984). Palm (1991), working with a high order 
perturbation scheme, shows that there is no reflection at the order 
m and frequency raw, where m is an integer and to is the frequency, 
for monochromatic incident waves. Bichromatic waves are shown to 
have a null second order reflection coefficient; this result is shown 
to hold for higher order terms. Liu, Dommermuth & Yue (1992) 
working with a time domain, higher order perturbation scheme cal- 
culate, numerically, the wave diffraction by a circular cylinder, giv- 
ing results for the steady force components on the cylinder, and the 
transmission coeflcients. 

Mathematical Formulation 

We assume that the flow is incompressible and irrotational being 
thus described by a velocity potential <j>. The free surface is described 
parametrically by R(£, t) = [X(£, t), Y(£, t)) to allow for overturning. 
The velocity potential satisfy the nonlinear boundary value problem: 

VV = 0 (1) 

<f>t + \(V(f>)2+gY = 0 (2) 

£=V, (3) 
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(1) is to be valid inside the fluid region, (2) and (3) on the free sur- 
face and (4) along the cylinder's surface. At some initial time, e. 
g. t = 0, values for R and ^|R, must be prescribed; we set a steep 
nonlinear steady wave, impulsively, above a submerged cylinder in 
deep-water, see figure 1. The steep steady wave, was computed 
through a numerical code described in Teles da Silva h Peregrine 
(1988). The nonsteady evolution of the initial condition is computed 
by a Boundary Integral code which is an extension of the one devel- 
oped by Dold h Peregrine (1984) to compute the evolution of surface 
waves on water of uniform finite depth; in the original scheme the 
free surface is mapped on a closed curve and the horizontal bed into 
a circle which is surrounded by the mapped free surface; the mapped 
free surface is then reflected about the bed to ensure impermeability; 
in the present case the transformed free surface is reflected about the 
transformed cylinder contour, instead of about the bed, Peregrine 
(1989). 

Results 

Lengths have been scaled by j, where k is the wave number, 

accelerations by gravity g, and time by [gk)~^. 

The solutions of the problem depend on three parameters which 
are: i) wave-height H, ii) cylinder radius R, iii) the depth of the 
cylinder d. The potential flow modelling, given in the last sec- 
tion, poses strong limitations on the variation of these parameters: 
first, The Keulegan-Carpenter numbers, Kc, used as measure of the 
vortex-shedding, must be kept low, smaller than 1.5 or 2.0 according 
to the depth of the cylinder, Chaplin (1984); second, wave break- 
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ing stops the computations; and third, because of the imaging, the 
cylinder cannot be uncovered. 

Most of the computations were made on a Sun Sparc Station 
2. The simmulation of five wave crests moving over the submerged 
cylinder, during five wave periods, with twenty numerical points per 
wave takes 9.9 CPU seconds. 

Figure 2 presents the time evolution of an initial wave, for r = |, 
d = |, which are the data used by Dean in his 1948 paper; the wave 
must be small, H = 0.1, for the cylinder being near the mean level, 
higher waves would break or uncover it; the centre of the cylinder, 
is at the start, located below the sixth crest at the position x = TT; 

the wave length is ~TT; the numerical simmulation is made during 
a time of 11 wave periods. 
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Figure 2 reveals some important aspects of the wave diffraction. 
With the exception of a faint disturbance starting above the cylinder 
at time zero, propagating upstream, due to the impulsive start of the 
numerical experiment, no other disturbances move upstream of the 
cylinder. This appears to be a nonlinear confirmation of Dean, and 
Palm's results about the absence of wave reflection in deep water. 
Following the lines of the crests in the space time diagram, Figure 
2, we see that waves lose their steady shape as they pass a region 
of perturbation shaped like a 'V; putting a ruler over a crest line 
we see that as the waves pass the cylinder the crests are over this 
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line meaning that they are delayed; it is also possible to see for some 
crests, those that start nearer the cylinder, with the ruler, that after 
they leave the 'V region of perturbation they get back to the origi- 
nal line, meaning that once outside the 'V crests recover the delay. 
Another feature, in Figure 2, is that the wavelength of the perturba- 
tion on the 'V appears to get longer towards its downstream edge as 
it would be for a wave group; with a ruler it is possible to estimate 
the slope of the 'V's edge and hence the velocity of propagation of 
the perturbations; these estimated velocities agree with the group 
velocity of small deep water waves with a wave-length which is a 
half of the wave length of the incident waves. The fact that the per- 
turbed region be defined by a second harmonic of the transmitted 
wave suggests an analysis of the harmonics of the incident and the 
perturbed wave. 

Fig. 3a 

Fig 3b 

In order to have an idea of the relative magnitude of wave har- 
monics in simmulations, the time history of the elevation of 2 points 
on the free surface have been recorded for some cases; the points have 
been placed at a horizontal distance of eight times the radius of the 
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cylinder, one downstream and the other upstream. A typical case is 
shown in Figure 3 where, for an incident wave of heigth H — 0.16 and 
a cylinder of radius r — 0.4 submerged at the depth of d = 0.8, the 
time histories of the upstream, Figure 3a, and downstream, Figure 
3b, surface elevation are depictured; in both cases, for comparison, 
the time history for the original steady wave has been included. In 
Figure 3a the time history of the upstream free surface elevation is 
undiscernible from that of the steady wave supporting the conclu- 
sion that waves are not reflected; the some does not happens for the 
upstream elevation where from the third wave period a conspicuous 
second harmonic appears in the perturbed wave. To see it more 
clearly we decomposed the time histories in its Fourier modes in the 
same way as for the forces in equations 5 and 6 below. The results 
are shown in Table 1 where the most important features, when we 
compare the upstream elevation with the elevation of the incident 
steady wave, appear to be the permanence of the first harmonic and 
the great increase of the higher harmonics; among the higher har- 
monics the most important is the second which in fact shapes the 
'V. 

Table 1 

Harmonic Steady Wave Upstream Wave Downstream Wave 
a0 0.000010 -0.000106 0.000200 
ri 0.079812 0.078808 0.078772 

T2 0.003213 0.003252 0.016048 
rz 0.000213 0.000219 0.003312 
r4 0.000029 0.000003 0.001447 
T5 0.000022 0.000008 0.000195 
re 0.000004 0.000006 0.000167 

A remarkble fact in Figure 2 is that outside the perturbed 'V 
region the waves recover their original shape and steadyness with no 
traces of the interaction with the cylinder although the interaction 
is nonlinear; this is the same for the steeper waves provided they 
do not break. Comparing the position of the crests going past the 
cylinder with the position they should have in the absence of the 
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cylinder, we find the phase lag. Figure 4 shows the time evolution 
for the phase lag, vertical axis in degrees, for four different waves; 
namely, wave 1: H = 0.1, T = 6.275, c = 1.001, wave 2: H = 0.2, 
T = 6.252, c = 1.005, wave 3: H = 0.3, T = 6.213, c = 1.011, wave 
4: H = 0.4, T = 6.1588, c = 1.0202; H, T and c are respectively 
the nondimensional wave-height, period and phase speed. In all 
this experiments r — 2TT and - = 1.2; for this same radius and 
submergence Mehlum (1980) calculates a phase lag of 32.6 degrees. 
Note that this is nearly exact for wave 1, but, the phase lag tend to 
decay with wave-height. A bigger wave with H = 0.5 would break. 
In all the above cases, in given time, the phase lag returns to zero 
as the tails of the first two waves suggest; a permanent phase lag is 
an asymptotic result 

Fig. 5 

0.02 

0.00 

-0.02 

-0.04 

A typical time history for the X and Y force components is 
shown in figure 5 for a wave of heigth H = 0.5; the figure shows a 
remarkble periodicity from a few periods after the begining of the 
experiment. For small waves the linear theory predicts that the 
X and Y, horizontal and vertical, force components have the same 
amplitudes, oscillate in quadrature with the wave period and there 
is a phase difference of \ir between them. We observed these results 
to hold for smaller waves; however for the higher waves we find the 
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phase difference between the X and Y force components to become 
smaller, by as much as 10%, than f. The X and Y force components 
have been, both, decomposed in Fourier modes: 

•y + ^(anCosOj + bnsin9nt) 

where 6n = ^S£, T being the wave period; or simmilarly as 

Y + ^2 rncos[0nt - Sn] (5) 

r» = (a«2 + &n
2)* (6) 

where 8n is a phase shift. Results for fixed parameters 'R' and 'd' 
and a set of four waves with increasing wave height are displayed in 
table 2. We find for all waves a negative horizontal drift, ^, which 
increases with the wave-height. 

Despite the fact that the amplitudes of the X and Y force com- 
ponents are the same, irrespective of wave-height, the amplitudes 
of the Fourier modes of the same frequency increasingly differ for 
the higher waves. The vertical drift, ^-, increases with wave height 
reaching, for the last wave H = 0.7, an amplitude greater than any 
other Fourier mode, except the first. 

As should be expected, the force harmonics for the smaller 
waves behave as in a perturbation expansion in the small parameter 
e = H, which is the dimensional wave height scaled by -|; represent- 
ing either the vertical or horizontal force components as: 

fie + f2e
2f3e

3 +  

where the first term in the expansion represents the first harmonic 
of the vertical or horizontal force component, the second term rep- 
resents the second harmonic and so on. Observe in Table 2 that: 
the first harmonic for H = 0.3 is roughly three times the first one 
for H — 0.1; the second harmonic for H = 0.3 is roughly nine times 
the second one for H = 0.1; the steady components for H = 0.3 
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are roughly nine times the steady components for H ~ 0.1. For the 
waves with H = 0.5 and H — 0.7 these relations hold approximately 
only for the first harmonic. This provides a measure of the range of 
validity of the linear and weakly nonlinear results and also a way to 
estimate the force components of waves from the force components 
of particular wave. This is not new but it is very interesting to know 
that it holds for the first harmonics of a wave with H — 0.7 that is 
over 80% the height of the highest mathematically, not physically, 
possible wave. 

Table 2 

Wave/cylinder Harmonic X-component Y-component 
H=0.1 «o -0.000002 0.000289 
T=6.2753 ri 0.007285 0.007285 
c=1.0012 r2 0.000029 0.000029 
D=0.5,d=l. ^3 0.000001 0.000001 
Kc=0.23 ^4 0.000000 0.000001 
H=0.3 «o -0.000021 0.002489 
T=6.2129 ri 0.021710 0.021704 
c=1.0113 f2 0.000310 0.000313 
D=0.5,d=l. r3 0.000003 0.000004 
Kc=0.69 ri 0.000003 0.000003 
H=0.5 a0 -0.000111 0.006417 
T=6.0899 ri 0.035615 0.035549 
c=1.0317 r-2 0.001097 0.001102 
D=0.5,d=l. r3 0.000035 0.000028 
Kc=1.08 ^4 0.000005 0.000008 
H=0.7 a0 -0.000200 0.010207 
T=5.9107 ^i 0.044369 0.044097 
c=1.0630 r2 0.002526 0.002534 
D=0.5,d=l. r3 0.000192 0.000183 
Kc=1.56 n 0.000037 0.000019 
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Conclusions 

A numerical scheme for the time domain simmulation for the 
nonlinear steep wave diffraction by a submerged cylinder has been 
successfully implemented. Results have been checked, with very 
good agreement, with analytic, semi-analytic and experimental re- 
sults given in the literature, namely Ogilvie (1963), Mehlum (1980), 
Vada (1987) and Chaplin (1984). In these comparisons an impor- 
tant point appears: many of the analytic and semi-analytic results 
presented in the literature are for waves that actually break; spe- 
cially these for small cylinder depth where the diffraction effects are 
enhanced; by one side when waves break the flow ceases to be a 
potential flow and results should not be valid, but by another side 
Chaplin finds with experiments that, in his case E experiment, the 
mean vertical force agrees well with Ogilvie's results and the total 
force is smaller than that predicted by Ogilvie's results. This may 
suggest that approximate results frequently provide a good predic- 
tion of phenomena and sometimes give an upper bound for quanti- 
ties. 

Despite the limitations inherent to potential theory, and the 
computational costs in a time domain simmulations, which preclude 
their use for a thorough description of the phenomenon, some im- 
portant aspects of the problem can be studied and complemented 
with frequency domain and experimental investigation; since com- 
putational costs are comparatively very cheap for frequency domain 
calculations and potential modelling is not a problem with experi- 
ments. 

With respect to the disturbances on the waves due to the pres- 
ence of the cylinder we have two main aspects: the phase-lag on the 
transmitted wave and the transmission and reflection coefficients. 
With respect to the phase lag, we find that the linear potential given 
by Mehlum (1980) gives cheap and accurate results for smaller waves 
and for the higher ones these results provide an upper bound. With 
respect to reflection our results support the linear prediction of no 
reflection; regarding the transmitted wave we find that the presence 
of the cylinder greatly enhances the higher harmonics; but to this 
stage there is not yet a satisfactory description of the dependence of 
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this phenomenon on the parameters; neither have we yet atempted 
to quantify it with the help of transmission coefficients. 

Regarding the forces on the cylinder due to waves an important 
result is that for the very steep waves the horizontal and vertical 
steady force components become evident and the vertical steady 
component come to be at the same order of magnitude as the first 
harmonic. Also important is the increase of the magnitude of the 
higher harmonics which is inherent to the very nonlinear charac- 
ter of steep waves; this increase in magnitude of the harmonics is 
followed by a loss of symmetry between the horizontal and vertical 
components. 
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