
CHAPTER 66 

Quasi-Three-Dimensional Model for Storm Surges and Its Verification 

Takao Yamashita1, Yoshito Tsuchiya,M.ASCE2 and Hiroshi Yoshioka1 

Abstract 

Three-dimensional model for storm surges was developed, in which momentum 
equations first were solved in the vertical direction together with mass conser- 
vation and turbulence model, then mass conservation in the horizontally two- 
dimensional coordinates was solved by the finite difference method. Several fun- 
damental tests concerning swing and wind-induced current, were performed to 
examine the model properties. Finally the hindcasting of the current profile in 
the Tanabe bay was conducted to test model applicability. 

Introduction 

Storm surge models have been developed as a two-dimensional model, which is 
called a vertical integrated model or one(single) level model. Because of Japan's 
recent need for waterfront development, significant environmental problems and 
coastal disasters will persist during accelerated future developments in the coastal 
ocean. It is desired to develop a more sophisticated numerical model for storm 
surges which predicts the profile of current, turbulence, and surge heights. A 
three dimensional model for tide and storm surges combined with a turbulence 
and wind-wave prediction model may become popular in coastal ocean assessment 
in the near future. 

Heaps (1973) studied dynamic response of the Irish Sea to a stationary wind 
stress field by a finite difference model which solves the homogeneous hydrody- 
namic equations taken in linearlized form by transforming them to eliminate the 
vertical coordinate z. The system including the coordinates x:y,t, and z was 
solved by an explicit finite difference scheme. This model only considers homoge- 
neous systems, and neglects the convection terms. A series of numerical experi- 
ments was also performed with the model to determine the steady state circulation 
of the Irish Sea system. Sundermann (1974) and Laevastu (1975) extended the 
method for three dimensional, multi-level, and multi-layer flow systems. Simons 
(1974 & 1975) studied the circulation in Lake Ontario under strong stresses by 
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using a four layer model. Sundermann (1974) extended Hansen's (1962) basic two 
dimensional scheme to study three dimensional tidal circulation of the North Sea. 
This extension involves an assumption of homogeneous density distributions. The 
basic two-dimensional explicit scheme of Hansen (1962) also has been extended 
by Laevastu (1975) by using multi-layer modeling. 

Another three-dimensional model which is the simple version of a-coordinates 
was developed by Koutitas and O'Connor (1980), in which momentum equa- 
tions together with mass conservation equation and turbulence model first are 
solved in the vertical direction. Then mass conservation in the horizontally two- 
dimensional coordinates is solved. This model elaborates on the vertical motion 
of fluid and reducing the matrix of difference equations. 

Numerical prediction in shallow bays or estuaries must be focused to develop 
an effective three-dimensional model for environment assessment in the coastal 
ocean, since this is our most probable development space in the coming century. 
In this paper, a quasi-three-dimensional (Q3-D) model is developed based on 
Koutitas and O'Connor's (1980) modeling. 

Figure 1 Coordinate system and definition of variables. 

Basic Equations and Solution Method 

The basic equations for the Q3-D model consist of the momentum equations of 
mean flow, the equation of continuity and the equations of turbulence model. The 
following additional relations for the vertical velocity w and the surface elevation 
( are used. 

d 
w{x,y,z) = -— /    wd«-— /    v 

ox J-h oy J-h (1) 

d( | d(HU) | d(HV) _ o 

dt        dx dy 
(2) 
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which is derived from the mass continuity equation by integrating in the vertical 
direction. This equation satisfies total mass conservation in the horizontally two- 
dimensional system. 

Vertical distribution of turbulence has to be specified to simulate the veloc- 
ity distribution of wind-induced mean currents. Several turbulence models are 
now available for the Q3-D modeling: (1) The so-called zero equation model in 
which the vertical eddy viscosity vt is assumed. (2) Multi-equation models in 
which turbulence kinetic energy budget is described by the standard k-e model. 
In order to get an efficient numerical solution to the three-dimensional system of 
equations, Koutitas and O'Connor (f980) employed a time fractional finite dif- 
ference method in which advection and propagation are split. The computational 
domain is covered by a rectangular-grid system in the x-y plane, and the water 
depth is divided into a several layer-elements as shown in Figure 1. The finite 
element Galerkin method is applied to the momentum equations to obtain nodal 
velocities over the depth. For the depth-averaged continuity equation (2), the 
finite difference method is applied. 

Applying an explicit scheme, the difference equation of the momentum equation 
in the x-direction is written as: 

un+l _ un fan fan fan ^n+1/2 
_      ..n ..n wn 

At dx dy dz dx 

d (    dun\      d (    dun\      8 (    dun+1\     r „ 

The y-momentum equation can be shown by the same manner. 
Assuming fractional time step t*, the momentum equations can be split up as; 

for the a;-momentum equation, 

u*      un       „dun      „dun       „dun       dC+1/2 

At = At-U^^V-dy--~W^Z--
9~dx- (4) 

d (    dun+1\      u*      d  (    dun\      8  (    dun\      r „ 

At      dz \      dz   /      At     dx \     dx J     dy \     dy 

for the t/-momentum equation, 

v*      vn       ndvn       vdvn        „dvn       d(n+1/2 

ArAt-U^~V~dy--W^-g-W- (6) 

vn+1      d (    dvn+1\      v*      d (    dvn\      d (    dvn\      , „ 

-Af'Tz r•&-J = At + d~x \VT^) + Yy \VT~dy-) ~ fu (?) 

and the vertical velocity w is calculated by 

w{x,y,z) = -Q^J u{x,y,z)dz- —J  v(x,y,z)dz (8) 

The finite element Galerkin method is applied to Eqs.  (4) to (7) to solve the 
nodal velocities over the depth.   Substituting the approximated velocity u into 
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the original momentum equation and integrating it between nodal points over a 
whole area, we get the following residual equation in the x-direction. 

f ~u* f „un 

I  U——CLZ =   /  U-—&Z 
J    At J    At 

[• n9un,        f. ndun,        r     ndun
J        f,d(n+1'2, 

- / uun-K-dz - / u«"-r-dz - / W——dz - / M—^ dz (9) 
J ox J        ay J oz J        ox 

Applying this relation to Eqs. (4) to (7), a set of linear equations can be reduced 
to 

Au*   =   a",        Bu"+1    =   b* 

Cv*    =   c\        Dv"+1    =   d* »+i    _   ^   f (10) 

where A is the 2x2 matrix, B the 2x4 matrix, a and c are two component 
vectors, and b and d are four component vectors. 

The linear interpolation function is used as 

u = Nkuk + Nk+iuk+1 (11) 

where 

Nk = -(zk+1-z), Nk+1 = - (z - zk) (12) 

where lk is the element length defined by lk = zk+i — zk. 
The three-dimensional current field is obtained by computing these equations 

which can be solved by the Gaussian elimination method. When velocities 
u(x,y,z) and v(x,y,z) are calculated in the time step n, the corresponding ver- 
tical velocity w(x,y,z) is computed by 

w(x,y,z) = —      u(x,y,z)dz—  I  v(x,y,z)dz (13) 
Jik Jik 

The surface elevation ( is calculated by 

^n+l/2 _ £n-l/2 d{HUf        8{HV)n 

At dx dy 
(14) 

In the above-mentioned computation processes, the kinematic eddy viscosity vt 

in the time-space domain has to be specified. Three types of turbulence models 
are incorporated into the numerical model for Q3-D storm surge prediction: 

(1) For the zero-equation turbulence model, Vt is assumed as: 

vt = constant     or     vt (15) 

(2) For the one-equation turbulence model, vt is calculated as: 

vt = Vkl (16) 
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where / is the eddy length scale and k is calculated by the fc-equation. 
(3) For the two-equation turbulence model, v-t is calculated as: 

vt = CD- (17) 
£ 

where k and e are ontained by the k-e model. Details of the k-e model are shown 
below. 

The k equation is discretized by the Chrank-Nicholson scheme as: 

kn+1     1 /  „dkn+l\     1 ( d  (vTdkn+l 

At       2 1        dz    I      2 \dz \<Tk    dz 

•5-i('!)*S^(S^'-' 
The finite element formulation is made by multiplying the weighting function, k, 
to this equation and integrating it over the depth as: 

kn 

k——dz 
At 

kendz(19) 

The linear shape function, Eq. (20), is assumed in the finite element formulation. 

1 1 
Nk = T{zk+1 - z),     Nk+1 = T(z - zk) (20) 

Ik 'k 

where k is the nodal number, 4 the element length, and zk the position of k in 
the z axis. 

The point of z is interpolated by, 

z = Nkzk + Nk+lzk+1 (21) 

Applying the Galerkin method, the integrations of each term in the equation are 
shown respectively as: 

Equations for e are derived in the same munner, and are solved numerically 
togther with the k equations by the Gaussian elimination method. 

Fundamental Tests of Q3-D Model 

Model parameters in the k-e equations will now be discussed along with several 
fundamental tests in the rectangular flume (i.e. swing and wind-induced current 
tests). 

Boundary conditions at the bottom and surface: For time-averaging turbu- 
lence models, such as the k-e and one equation models, the boundary conditions 
at the bottom and surface have to be carefully discussed because of its strong 
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shear flow characteristics. Usual modeling method in this area apply the knowl- 
edge called the universal law of the wall, which depicts the velocity distribution 
of shear flow by a logarithmic law given by 

u       1,   EuTy 
— = -In — (22) 
Ur K V 

where uT is the friction velocity, K the Karman constant, E the roughness pa- 
rameter, y the distance from the wall, and v the kinematic viscosity of the fluid. 
When we assume a hydraulically smooth wall, the roughness parameter may be 
evaluated by E = 9 in the range of 30 < uTy/v < 100. This concept is useful in 
the modeling of mean flow field in the boundary layer. Equation (22) is used to 
develop a quasi-three dimensional model for simulation of storm surges. 

On the other hand, the boundary condition of the turbulence model is posed 
by the assumption of balancing production and dissipation, which results in the 
following relation 

k 1 uT
3 

£=iy- (23> ny 

for the k-e model. 
To compute the mean flow in the interior region, we have to specify the velocity 

at the interface between the interior region and boundary layer with the relation 
of shear stresses and eddy viscosity given respectively by 

du\ 
!/(— = rs at the surface (24) 1  Q o. 

Z = ( 

j/t— I = Tf, at the bottom (25) 
z=-h 

where rs and TJ are the shear stresses at the surface and bottom of the sea 
respectively. 

When we specify the shear stresses (TS and r&), and turbulence properties (k 
and e), it is possible to get the boundary condition for mean flow field by velocity 
gradient. The following relation is used to evaluate the eddy viscosity, vt. 

k2 

Vt = c^— (26) 

Dirichlet's problem for the disecrate system brings a difficulty in determining the 
velocity gradient without dependence on grid size. Fine mesh makes the model 
extremely expensive in the three-dimensional case. To overcome these problems 
the point where the boundary condition is posed is fixed in this investigation. At 
the surface layer the point of Azs=1.35m and A^=0.1m at the bottom are set. 
This means that the distance from the bottom or surface, y, is fixed by Azs or Azj 
in the wall law relation of Eq.(22) or Eq.(23). In the case of the zero-equation 
turbulence model we do not have any information about turbulence near the 
boundary, therefore we need some assumptions in evaluating the eddy viscosity 
vt or shear stresses T& and/or T„. If the two-equation turbulence model is used, 
we do not need any assumption. We do need much CPU time and information 
of turbulence at the open boundary. This is usually difficult to get. 
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For zero-equation modeling, the following text elaborates on the way to deter- 
mine the bottom shear stresses from the numerical results of swing and wind- 
induced current tests. For this purpose, both the quasi-three dimensional simu- 
lation of k-e model version and the horizontally two-dimensional simulation are 
also conducted under the same computational condition. These results are used 
as indexes to determine the bottom shear stresses at the fixed point Az;, by 
comparison of surface elevations. Moreover, a simulation of flow combined tides 
and wind-induced currents is performed by the model of zero-equation turbulent 
version. 

Swing test Free oscillation of water in the closed flume may be simulated fairly 
well by the so-called single level model (horizontally two-dimensional model). 
By comparing the water surface oscillations computed by the single level model 
and those by the Q3-D model, the bottom shear stress of Q3-D model can be 
evaluated. As previously stated, this is one of the parameters which has to be 
determined in the Q3-D model. A closed flume which is used for the swing test 
has a dimensions of uniform water depth of 20 m deep, £=10,000 m in length and 
B =3,000 m in width. The horizontal spacing of the grid system is Ax=1000 m 
and the number of the vertical nodes is 35. Time increment is fixed by A<=10 sec. 
The initial surface profile is given by ((x) = 0.0001 x — 0.5. For the zero-equation 
version of Q3-D model, the vertical distribution of eddy viscosity is assumed by 
the following equation which is obtained by fitting the mean velocity distribution 
with Baines and Knapp's experiment. 

ut = 0.01 + KC, (l - 3.6£) -h (27) 

This assumption of eddy viscosity distribution will be further discussed later by 
comparing zero and two equation models in vt(z). 

Surface elevation at the right end is shown in Figure 2 together with the results 
computed by the leap-frog scheme(dotted line). Bottom friction is neglected in 
the computation by leap-frog scheme. The computed propagation speed of the 
disturbance on the uniform depth of 20 m is 1428 sec, which is equivalent to the 
long wave celerity. It can be recognized that almost uniform velocity distribution 
of the mean current is computed in the case of swing test with no bottom friction. 

Figure 2 Comparison of water surface oscillation at the flume computed by Q3-D 

model (solid line) and 1-Level Model (dotted line). 

Wind-induced current test The three-dimensional model is of course more ef- 
fective than the horizontally two-dimensional in the computation of wind induced 
current which is characterized by the strong shear near the surface. In the case 
of a closed basin, a return flow is observed near the bottom. 
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A wind-induced flow test in the closed flume is conducted and the vertical 
distribution of eddy viscosity as well as mean flow is discussed together with 
surface elevation property. This is calibrated by a comparison with theoretical 
formulation of wind set-up using Eq. (28). 

c„ •JpaCpLW2 

4gDpw 
(28) 

where £max is the maximum water surface elevation, Co the drag coefficient at 
the surface, L length of the flume, W the wind velocity, D the total depth, pa 

the density of air, and pw the density of sea water. 
As mentioned before, shearing stresses both at the surface and bottom are not 

uniquely determined in the Q3-D model of the zero-equation version of turbu- 
lence. They depend on the spacing of nodes just inside the interface because 
an approximation accuracy of the mean flow gradient depends on node spacing. 
When the number of vertical node points is fixed, shearing stresses are depen- 
dent upon the total depth. Figure 3 depicts this effect, in which four different 
results in the maximum surface elevation under the same condition are compared. 
Changing the still water depth in the range of 5 to 40 m, the maximum wind 
set-up is computed under the condition of uniform wind speed of 20 m/sec in 
the same flume as swing test. Gradually increasing wind speed from 0 to 20 
m/sec for 3000 sec is assumed in the test to reduce time to be steady state which 
means small tank oscillation is expected. In the figure, Q3-D CONST indicates 
the results computed by using the uniform distribution of eddy viscosity in the 
Q3-D model of zero-equation turbulence version, Q3-D QUARD indicates those 
expressed by the distribution resulting from Eq. (27), 1 LEVEL MODEL indicates 
those developed by the horizontally two dimensional model. 

I 
D Q3D QUARD 

A  Q3D CONST 

X 1 LEVEL MODEL 

:\ 

I 
A ; \ 

8\ 
\ 

DEPTH       (m) 

Figure 3 Relation between the water depth and the computed set-up. 

It can be recognized that the wind set-up computed by Q3-D QUARD is larger 
than that computed by other models in the region shallower than 10 to 5 m. This 
means that it may result in over-estimate of the shearing stress at the surface, and 
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a lower-estimate at the bottom in the very shallow region, because the their real 
distribution may become uniform as the depth becomes shallower. The difference 
between 1LEVEL MODEL and the solid line comes from the difference of out-put 
points. The out-put point of numerical computation is just inside of the end-wall. 

Vertical distributions of the mean flow and eddy viscosity at the center of 
the flume in steady state is shown in Figure 4 where the column is the depth 
nondimensionarized by the still water depth, while the abscissas indicates the 
horizontal velocity normalized by friction velocity. White circles in the figure 
indicate the experimental values of Baines-Knapp showing the null-velocity point 
at 0.7 in nondimensional depth. 

Z/h Z/h 

5 o    Bains- Knapp 

U/Ur 

(a) Constant distribution of eddy viscosity 

/h 
0. £/ 

a    Bains-Knapp 

i 
l° 

A.   2 

u/ur 
i^r^ ——f — —r' T

1
- 3l r'ii  

Z/h 

(b) Parabolic distribution of eddy viscosity 

Figure 4 Vertical distribution of the mean flow and eddy viscosity at the center 

of the flume in steady state by Q3-D model of zero-equation turbulence version. 

On the other hand, Figure 5 also shows the vertical distribution of both mean 
flow velocity and eddy viscosity which were computed in terms of the Q3-D model 
of k-e version whose boundary conditions are given by Eq. (23) for k and Eq. 
(29) for e. 

ki 
Khf, 

£b = 
k2 

(29) 

where the length scale parameters are assumed as Ls = 100Azs and Lj = Azj by 
comparison of mean flow velocity distribution with Baines and Knapp's experi- 
ments. 

From these figures it is found that the null-velocity point of the vertical dis- 
tribution of mean flow is located around the nondimensional depth of 0.6 which 
is slightly lower than that by experiment. Moreover the vertical distribution 
of computed eddy viscosity by the k-e model is similar to that of a parabola, 
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Z/h 

3ains-Knapp 

U/Ur 

. Time 6000(sec) 

(a) At the time of t= 6.000 sec 

Z/h 

Bains-Knapp 

Time 12000(sec) 

(b) At the time of (= 12.000 sec 

Figure 5 Vertical distributions of the mean flow and eddy viscosity at the center 

of the flume in steady state by Q3-D model of k-e version. 

Eq. (27), which is assumed for the model of zero-equation version. The com- 
puted eddy viscosity, however, skews downward with its maximumm at 0.4 in the 
nondimensional depth. 

Application to wind-induced currents in Tanabe Bay 

Observations of vertical velocity distribution in terms of an acoustic Doppler 
current profiler (ADCP) have been conducted since 1989 in Tanabe Bay by the 
Shirahama Oceanographic Observatory, Disaster Prevention Research Institute, 
Kyoto University. Tide and wind vector on the sea surface are also observed at 
the Oceanographical observation tower whose location is indicated in the map of 
Tanabe Bay (Figure 6) together with ADCP's location and depth contours. 

As this data is very useful for calibration of three-dimensional numerical model, 
simulation tests of mean flow in Tanabe Bay are carried out to compare with ob- 
servation in the current profile. Because the model assumes a well-mixed situation 
in the sea, the observed profile of mean current of horizontal component in winter 
season is selected for comparison. Figure 7 shows the time changes in wind vec- 
tor(upper), tide(middle) and current profile(bottom) which are used for model 
calibration here. Current vector in this figure is defined by NS-WE system in 
which the northward component is plotted upward and the westward current is 
leftward. A typical feature of this data is the strong wind-induced currents whose 
direction is ESE and the return flow to the direction of W. 

The sea bottom topography is reproduced from the chart (No. 74) with the 
grid system of Aa; = 100 m. Total point number is 89 x 110 and the origin is 33° 
44' 40" north latitude and 135° 17'00" east longitude. For actual computation, 
200m horizontal grid size, 19-point vertical nodal points, and 5sec time increment 
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Osaka 

f|: Tanabe bay 

Shionomi-saki 

Figure 6 Location of the Tanabe Bay and the oceanographical observation tower 
together with ADCP's observation point. 
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Figure   7   The   data   of  wind   vector(upper),   tide(middle)   and   current   pro- 
file(bottom), observed on December 12, 1989. 
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(b) Computed velocity profile by Q-3D model 

Figure 10 Comparison between observation and simulation of current profile. 

Observation of 2 min and 10 min averaging and computation output of 10 min 

interval. 
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are employed. Simulation period is 5:00-11:00, 20 December, 1989 which covers 
ADCP observation, 10:00-11:00. Wind condition is assumed to be constant NW 
wind whose velocity is 10 m/sec. 

A sample of the computed mean flow vectors at the surface level, 5m level, 
10m level and 30m level are shown in Figure 8. The vertical velocity distribution 
on six lines of N-S-l, N-S-2, N-S-3, W-E-l, W-E-2 and W-E-3 are shown in 
Figure 9. Figure 10 is the comparison between observation and simulation, in 
which observation of 2 min and 10 min averaging and computation output of 10 
min interval are shown. The strong wind-induced flow is not simulated in the 
numerical model, however, the return flow (probably the tidal current) is well 
simulated both in its magnitude and direction. One possibility which may cause 
this discrepancy may be the open boundary condition. The other may be some 
trouble in the ADCP observation. Further discussion about this will be needed 
in terms of continuous efforts in executing simulations and ADCP observations. 

Conclusions 

A three-dimensional model for storm surges was developed and its fundamental 
tests were carried out. The obtained main results in this paper are shown below. 
(1) From the swing test, propagation speed of the initial disturbance was con- 
firmed to be in good agreement with that of free long waves. 
(2) From the wind-induced current test in the two-dimensional flume, it was found 
by fitting the mean velocity profile with the Baines and Knapp's experiment that 
the eddy viscosity v-t was around 0.01-0.02 m2/s for Q3-D model of zero-equation 
version. Moreover the profile of eddy viscosity computed by the k-e model was 
similar to that assumed the parabolic profile in the zero-equation version. 
(3) The simulation of the flow fields in the Tanabe Bay was performed, in which 
both tides and wind-induced currents were taken into consideration. The velocity 
profile observation with ADCP also was conducted in the bay. From the compar- 
ison of velocity profile between observations and computations, it was found that 
the strong surface wind-induced flow was not simulated, however the return flow 
was well simulated both in its magnitude and direction. 
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