
CHAPTER 55 

IRREGULAR WAVES OVER AN ELLIPTIC SHOAL 

Xiping Yu1 and  Hiroyoshi Togashi2 

ABSTRACT 

A numerical model for the transformation of narrow-banded irregular waves 

over gradually varying bottom topography is presented. The model is based on 

the mild slope wave equation for component waves. Perturbation of the mild 

slope wave equation with respect to the deviation of the angular frequency of 

any component wave from that of a principal wave, which is a small quantity for 

waves of narrow-banded spectra, is carried out. The mild slope wave equation, 

which depends on the frequency of the component wave, can thus be replaced by 

the perturbation equations in terms of the principal wave parameters. The finite 

element method is considered for numerical solutions of the perturbation equa- 

tions. Since the matrix of the linear algebraic finite element equations depends 

on neither the component wa.ve properties nor the order of the perturbation, 

numerical solution of an irregular wave field can be efficiently obtained. The 

model is applied to the computation of the wave motion over an elliptic shoal. 

The computed wave height distribution shows satisfactory agreement with the 

available experimental data. 

INTRODUCTION 

The mild slope wave equation (Berkhoff, 1972) has been established as an 

effective model for describing the combined refraction and diffraction of small 

amplitude waves in nearshore zone.   In spite of its widely recognized validity, 
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application of this model in practice has, however, not always been easy. One 

of the reasons is the considerable computational efforts necessitated to solve the 

elliptic partial differential equation if the domain of interest has a dimension 

of over several wavelengths. The situation becomes even more critical if the 

wave irregularity is assumed to be of primary importance and, therefore, a large 

number of component waves must be dealt with independently. The research 

efforts on developing effective numerical methods so that the mild slope wave 

equation can be applied to the problems with large domain have led to many 

distinguishable achievements in the past decade. On improving the approach to 

the wave irregularity, however, less progress has been made. 

Real sea. waves are always irregular. However, most engineering analyses of 

the nearshore wave motion had long been based on representation of the real sea 

by monochromatic waves, usually the significant waves. The inaccuracy of such 

representation ha.s been pointed out by many researchers who compared the 

results by the representative wave method with those by other more accurate 

methods (see, e.g., Goda, 1985). Since the wave transformation processes are 

always frequency dependent, it can not be expected that the significant wave 

parameters of ahxirregular wave field are even close to the wave parameters 

following the transformation of the significant wave. This is particularly true in 

a region where waves undergo significant refraction and diffraction. 

The most direct approach to the wave irregularity may be the superposition 

method. This classical method is based on decomposing irregular waves into 

monochromatic components with different frequencies. By applying a regular 

wave theory to each of these component waves and reassembling the solutions, the 

irregular wave field can be computed. As long as the wave is of small amplitude, 

or, is linear, the superposition method is authoritative. However, a large number 

of component waves must be considered to ensure the accuracy of results. Since 

the component waves are numerically independent, considerable computational 

efforts are necessary. 

A rather different approach to the superposition is the energy method origi- 

nally proposed by Karlsson (1969). This method is based on a governing equation 

in terms of the energy spectrum, which is generally expressed by the product of a 

wave height related parameter with a distribution function describing the spread 

of the wave energy with respect to the frequency and the directional angle. Once 

the distribution function is assumed to be invariant or to be in a known form 

in the domain of interest, the wave height can be accordingly solved from the 

governing energy equation. This method is direct but can not be widely applied 

because the spectrum is in fact part of the solution of an irregular wave field 
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and it is not always appropriate to assume its invariance or foreseeability. In 

particular, if there is a permeable breakwater in the domain of interest, because 

of the frequency selectivity of the breakwater to reflection and transmission, the 

wave spectrum, at least, in the vicinity of the breakwater may undergo signifi- 

cant transformation. Any presumption on its form under this circumstance may 

lead to mistakes. 

The present study is to provide a rather different approach to the irregular 

wave motion in nearshore zone. The method is essentially superposition but the 

computational effort involved is equivalent to that required by the representative 

wave method. In the following sections, we first describe the governing equation 

for the component wave and perturb the equation with respect to the deviation 

of the angular frequency of the component wave to that of the principal wave. 

Then, we illustrate the finite element method for solutions of the perturbation 

equations. Finally, we apply our numerical model to the wave motion over an 

elliptic shoal and compare the computational results with experimental data. 

THEORY 

The Basic Equation 

For the component wave, with a small amplitude and an arbitrary angular 

frequency, over a gradually varying bottom topography, we employ the mild slope 

wave equation to describe its motion. Denote the water surface elevation caused 

by the wave motion by f/ = r/(x, j/)e~!<Tt, where a is the angular frequency and 

rj(x,y) is called the complex amplitude of the component wave (the modulus of r\ 

denotes the usual wave amplitude and the argument of q represents the relative 

phase of the water surface elevation). The governing equation for -q can then be 

written as (Berkhoff, 1972) 

V • {CCsVr,) + k2CCgr) = 0 (1) 

where V is the horizontal gradient operator, k the wavenumber, C the wave 

celerity and Cg the group velocity. Eq. (1) is for waves without any dissipation. 

If the dissipation effect is not negligible, we may have to introduce a factor 

H = 1 + i£ in the equation so that 

V • (CCsVrj) + n2k2CCgri = 0 (2) 

Eq. (2) is slightly different from a previous equation proposed by Dalrymple et 

al. (1984). It is expected that the parameter £, that is, the imaginary part of the 

factor /x, can be more closely related to the conventional energy decaying factor 
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$o (see, e.g., Horikawa, 1989) so that the dissipation effect can be readily evalu- 

ated. The relation between £ and $£> is clear if we consider a progressive wave in 

the positive x direction over a constant water depth. Under this circumstance, 

the energy decaying factor $o is 

1   d(ECs)__     IdE 
D        ECS    dx Edx K ' 

since Cg, which depends on the wave frequency and the water depth, is constant. 

E in (3) is the average wave energy, which can be expressed by 

E = \PgH* (4) 

for small amplitude waves, where H is the wave height, p the fluid density and 

g the gravitational acceleration. Inserting (4) into (3) gives 

*D = ~Hlx- (5) 

On the other hand, for a unidirectional wave, Eq. (2) reduces to 

g + ^, = 0 (6) 
Eq. (6) has two independent solutions, representing the progressive decaying 

waves in the positive and negative x directions, respectively. The wave in the 

positive x direction can be expressed by 

ri = T)\xoe-Wx-xo)eik{a:-x°) (7) 

where x0 denotes a reference point. Eq. (7) gives the variation of the wave height 

H as follows: 

# = #Ue-w*-*'> (8) 

Inserting (8) into (5), we readily obtain 

i = ^o (9) 

Perturbation of the Basic Equation 

We introduce a principal angular frequency and denote it by a. a may, but 

not necessarily, be defined as the peak angular frequency of the incident wave 

spectrum. With the principal angular frequency, the angular frequency a of any 

component wave can be expressed as 
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«T = ff(l + C) (10) 

where e = (<j — <x)/a. As long as we consider only narrow-banded waves, e is a 

small quantity and all the frequency dependent variables may then be expanded 

into power series of e at their principal values. In particular, for the surface 

elevation r), the wavenumber k and the product of the wave celerity C with the 

group velocity Ce, we have the following perturbation expressions: 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

V = ,(0) + ^(1) + e2 ,(*) + ... 

k = k(l + ea(1) + e2 
••<*& + •••) 

GC% = CCg(l + e(3( :i) + £^(2) + •••) 

where 

a(D a dk       1 

k da      n 

aW la2lPk 
l)m — n2 

/?« 
a   dCC% 

CCg   da 
l)m — n] 

/5<2> 
1 a2   d2CCs 

2 CCg   da2 

= -^j[(2n - l)m2 + 3n(n - l)(2n - l)m - n2(5n - 4)] (17) 

and 

1 A 2fcA    \ ,10, 

^2(1 + smhSJ (18) 

m = n+-    1 :—y- (19) 
2\       tanh2M/ v    ; 

The bars are used to denote principal values. It is obvious that a'1', a'2', f3"> 

and P^ axe all single functions of kh and, consequently, the principal wave 

effect parameter a2h/g if the following dispersion relation for the principal wave 

is taken into consideration: 
-2  7 

— = kh tanh kh (20) 
9 
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G2hfg 

Fig. 1: Variation of o/1' and a^ versus a2h/g 

In Figs, 1 and 2 we show these functional relations for 0 < ff2h/g < 5. It can 

be noted that when the principal wave tends to be a long wave, that is, <r2h/g 

tends to zero, a'1) tends to 1 while a^2\ /?(*) and /?(2> all tend to zero. On the 

other hand, when the principal wave becomes a deep water wave, or, when ff2h/g 

tends to infinity, a(1) tends to 2, a(2) tends to 1, fiM tends to -2 and /?(2) tends 
to 3. 

Substituting (11), (12) and (13) into the mild slope wave equation (2) and 

collecting all the terms for each order of e, we obtain 

V • {CC%Vr,^) + ^FCC^ = 0 (21) 

V • [CC8VV
{1) + /?(1>CCsV»/(0)] + v?kiCCt [v^ + p%^ + 2^^] = 0 

(22) 

V • [CCeVri^ + /J«CCSV»7(1) + P(2)CCsVr,W) + ^CC% [r,<2> + ^r,• 

+2«(iyi>+/?<2y°> + 2/?(iviyo) + a(1) V0) + 2a(2y°>] = o (23) 

where \i is treated as frequency independent.   By considering (21) in (22) and, 

(21) and (22) in (23), Eqs. (22) and (23) may be simplified to give 

V • (CCSVVM) + fVCCtfW + CCsVpW • Vr/0) + 2/,,2P(7(V1V0) = o 

(24) 
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G2h/g 

Fig. 2: Variation of /?W and /3*2' versus ff2h/g 

(CCsVr,W) + n2¥CCsri^ + CCe [V/?« • Vi/W - /S^V/jW . vvW 

+V/?<2> • V^0'] + 2ii2PCC$ \2a%W + amam.q{*) + 2a(2V0)l = 0 

V 

(25) 

Eqs. (21), (24) and (25) may be used to solve r)(°\ rj^\ T^
2
' and, therefore, r\ 

approximately. It is obvious that the zeroth order equation (21) describes the 

motion of the principal wave. This implies that the representative wave method 

is the leading order approximation of the present approach. Eqs. (24) and (25) 

govern the higher order modifications. The higher order equations all include a 

source term which depends on the lower order solutions. We also note that the 

equations for all orders can be expressed in a unified form as follows: 

V • (CCgVijM) + ftfCCtf• + q^ = 0        (ro = 0,1,2, • • •) (26) 

where 

o<°> = 0 

j« = CC*gV/?(1) • VIJW + 2/i2P«7ga
(1V0) 

?<2) = CCe [V^1' • V17M - pVVpM • VV
{0) + V/?(2) • VT? 

+2p2k2CCs [2a«V
(1) + a(1)a(1V°> + 2a^^} 

(27) 

(28) 

(29) 

Boundary Conditions 
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We consider two kinds of boundaries. The first kind is where the free surface 

oscillation is given by 

j] = aet0 (30) 

where a is the amplitude and 0 the phase. For each order, we require 

n^ = aeie (31) 

n(m) = 0        (m > 1) (32) 

The second kind of boundary condition is assumed to be expressed in the 

following form: 

dn 
~ - iXkrj + iisk = 0 (33) 
On 

where A and v are constants related to the physical situation (Yu et al., 1992). 

In particular, an impermeable boundary is represented by A = 0 and v — 0. 

Substituting (11) and (12) into (33) and collecting all the terms for each order 

of e, we obtain 

dv     - iXkr^ + iuk = 0 (34) 
dn 

dr)M 

dn 

GV2) 

dn 

iXkr,^ - tXa^kn^ + iva{1)k = 0 (35) 

iXkn^ - tXk(amn^ + a<2V°») + iva^l = 0 (36) 

The above equations have the following unified form: 

GV" 

dn 

where 

•iAVm)+P(m) = 0        (m = 0,l,2,---) (37) 

p(0) = iuk (38) 

p(1) = -iXa^kn^ + iva^l (39) 

PW = -JAib(aWj/W + a^^) + iva^k = 0 (40) 

(41) 
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FINITE ELEMENT METHOD 

It is known that the solution of the elliptic equation (26) when subjected to 

the boundary condition (37) stagnates the following functional in terms of ?/(m': 

1    ^ ^   __     f• •!       „     {m \ 1       9 V 9 
n =  /   -CCgVrj^ • Vj?(m) - -/iWCCgrj^ri^l - qim^r/^ 

Jn L2 2 

+ /    --tXlCC^r]^ +p(m)^  dT 

dtt 

(42) 

where ft is the domain of interest and T2 the part of the boundary of ft where 

(37) must be satisfied. For a finite element solution of rj^ which stagnates II 

in some approximate sense, we discretize the domain ft into elements and let all 

the elements be related to each other through the nodes located on the common 

boundaries of the elements. Denote 

1 ^ ^ „  r.m \   __  r.v, ^      r 

r    1       i 
dT 

IT = / \-ccsVn{m) • v»?(m) - l-/j,2k2ccsr]
im)^m) - 9(mVm) 

Jac L2 2 
dfl 

-UxlCC^rj^ + pWrjW (43) 

where fte is an element and Te its boundary, A = 0 and v = 0 if Te $ T2- Eq. (42) 

can then be written as 

n = £ir (44) 

We introduce the primed indices l',2',---,N' in the anti-clockwise fashion in 

each element for locally numbering the nodes related to the element and assume 

the global nodal numbers of 1', 2', • • •, TV' to be n\,, n2 respectively. As 

interpolation functions Le
v(x,y) (?' = l',2', • • •, TV') are defined in each element, 

any function F{x,y) in fte can be approximated in terms of its nodal values i*V, 

F2>, •••, FN> as 

F(x,y)=LlFi. (45) 

where the summation convention is implicit.    Therefore, IT can be partially 

evaluated so as to give 

ne _   1 Ke       (m)   (m) Am)e   (m) (46) 

where Kf, , is a TV' x TV' matrix depending on the interpolation functions as well 

as the local features of the principal wave. With the following matrix 

rpe 1    when   n,-< = i 

0   when   nti ^ i 
(i' = 1', 2', • • •, TV' and i = 1,2,- - - TV) (47) 
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where A^ is the total number of nodes, we have 

4m> = T,V^m) (48) 

Eq. (46) can then be expressed by 

ne = \ {Kt^T?,,) vt\^ + (4•^) 1• (49) 
Therefore, 

n = \ (E Kh,T^ „<»>„<»> + (E /f ^) ^ (50) 

_ 1 
_ 2 

where 

KartW + ^M'^ (51) 

Ka^YtKh'Tmi        and        i^m)-E4"l)e^ (52) 
e e 

From the necessary condition for II to be stagnated: 

-?7 = 0 (53) 
Sri) 

we obtain the following linear algebraic equations: 

K,Am) + Fjm) = 0 (54) 

since the matrix A',j is symmetric. When modified so that the forced boundary 

condition is satisfied, Eq. (54) gives the nodal values of rj(m\ It may be noted 

that the matrix Kij is independent of the order of perturbation. This implies 

that, if the LU decomposition method is utilized to solve the finite element 

equations, we need to carry out the decomposition only once for solving all the 

perturbation equations. The computational efforts involved in our numerical 

model are, therefore, equivalent to those required by the representative wave 

method. 

WAVE MOTION OVER AN ELLIPTIC SHOAL 

We apply our numerical model to the study of the unidirectional and narrow- 

banded irregular wave transformation over an elliptic shoal, a problem which has 

been investigated by Vincent and Briggs (1989) and by Panchang et al. (1990) 

with different methods. The topography and the incident wave conditions in 

our study are made identical to the U4 case of Vincent and Briggs (1989) and 

Panchang et al. (1990) so that our numerical results may be verified. The 

computational domain is sketched in Fig. 3, where the shoal is centered at 

x — 0 and y = 0 and the perimeter of the shoal is described by 
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10 i 10 

dissipation zone 

tX 

^^. 
y 
<  ^Hshoal^H 6.10 

i <_ 
7.92 

12 

Fig. 3: The computational domain (all numbers are measured in meters) 

3.05/       V3.967 

The water depth is 

h(x,y) = 0.9144 - 0.7620 |l - (j^J JL- 
4.95 

(m) 

over the shoal and is 0.4572m in the rest of the domain. 

The incident wave is assumed to have the following ^-spectrum: 

S(<r) = <7exp< —1.25 ( — I   +ln7exp 
(a- 

2Xa2 

(55) 

(56) 

(57) 

where S is so defined that the energy associated with the component waves of 

the angular frequency between a and a + A<x is E = pgS(a)A(r; the depth-effect 

parameter <j> is evaluated through 

0.5;/2 for   v < I 

1 - 0.5(2 - vf   for   1 < v < 2 (58) 

1 for   v > 2 

where v = cr(h/gy^2; the shape factor % ls 

0.07   for   a < a 

0.09   for   a > a 
(59) 
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S(cm2/rad) 

Fig. 4: The incident wave spectrum 

7 is the peak enhancement factor and ijj the Phillips constant. For the present 

case where 7 = 20, ip = 0.00047 and the peak angular frequency a = 4.833, the 

spectrum is demonstrated in Fig. 4. As it can be noted, most of the incident, 

wave energy is banded between a = 4 and 6. It is then reasonable to represent 

the spectral incident wa.ve by the superposition of the component waves with the 

following discrete angular frequencies: 

crn = 4.0 + reAcr        (n = 0,1, •••,50) 

where ACT = 0.04. Following Longuet-Higgins (1957) we have 

= £«,e<S iant 

(60) 

(61) 

where an = ^/2S(crn)Aa is the amplitude of the nth component wave and 8n 

are random values with a uniform distribution between 0 and 2ir. The forced 

boundary condition for the nth component wave in our problem can then be 

specified as 

V (62) 

The lateral and downwave boundaries in our problem should be totally trans- 

missive, that is, the boundary conditions should be specified so that the outgoing 

waves are totally absorbed by the boundaries. This requirement can be approx- 

imately met through the following numerical installation. We place a two-meter 
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=s 

X(m) 

Fig. 5: Computed wave height distribution 

dissipative layer with ft = 1 + 0.5i along the transmissive boundaries. The func- 

tion of the dissipative layer is as same as the wave absorber in a physical model. 

The artificial boundaries at y = ±12m are assumed to be impermeable and, 

therefore, the boundary conditions there are expressed by (33) with A = 0 and 

v = 0. The boundary at x = 14m is required to be non-reflective to the principal 

wave. The boundary condition can then be expressed by (33) with A = 1 and 

v = Q. 

In the computation, the domain is discretized into triangular elements with 

a dimension equivalent to one-fifteenth of the principal wavelength over the flat 

bottom. Linear interpolation functions are employed. Fig. 5 shows the resulted 

distribution of the significant wave height (normalized by the significant incident 

wave height H0). In Fig. 6 we compare the computed wave height, at x = 

2.28m, with the experimental data obtained by Vincent and Briggs (1989) and 

by Panchang et al.    (1990).    The agreement between the numerical solution 
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///tfn 

v(m) 

Fig. 6: Comparison of the computed wave height with experimental data 

'//M, 

Fig. 7: Water surface elevation over the top of the shoal 

and laboratory measurement is shown fairly satisfactory. In Fig. 7 we plot the 

assembled irregular wave profile (normalized by the mean incident wave height 

H0) over the top of the shoal. 

CONCLUSIONS 

We presented a numerical model for the analysis of narrow-banded irregular 

wave transformation over gradually varying bottom topography. The model 

is based on the mild slope wave equation for component waves. By regular 

perturbation, the mild slope wave equation, which depends on the frequency of 

the component wave, leads to the perturbation equations in terms of the principal 

wave parameters.  The finite element method has been suggested for numerical 
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solutions of the perturbation equations. Since the matrix of the linear algebraic 

finite element equations depends on neither the component wave properties nor 

the order of the perturbation, the computational efforts involved in the present 

model is equivalent to those required by the representative wave method. The 

model has been applied to the computation of the wave motion over an elliptic 

shoal. Satisfactory agreement between the numerical solution and experimental 

data has been obtained. 
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