
CHAPTER 38 

NUMERICAL SIMULATION AND VALIDATION OF 
PLUNGING BREAKERS USING A 2D NAVIER-STOKES MODEL 

H.A.H. Petit1}, P. T6njes2), M.R.A. van Gent3), P. van den Bosch1' 

ABSTRACT 

The numerical model SKYLLA, developed for simulation of breaking waves on 
coastal structures is described. The model is based on the Volume Of Fluid method 
and solves the two-dimensional (2DV) Navier-Stokes equations. Weakly reflecting 
boundary conditions allow waves to enter and leave the computational domain. 
Impermeable boundaries can be introduced to simulate a structure. A two-model 
approach can be used to simulate overtopping over a low crested structure. Results 
obtained with the model are compared with those obtained with physical model tests 
for waves on a 1:20 slope of a submerged structure. 

INTRODUCTION 

Traditionally, wave motion on coastal structures was studied by means of physical 
small-scale model tests. Some phenomena can be studied quite well on a small scale 
whereas others, like those which involve effects of viscosity, cannot. 
Numerical models do not have the disadvantage of scaling however, they have the 
disadvantage that the equations they solve represent a simplification of reality. 
Most models used to simulate wave motion on structures either solve the shallow 
water equations or potential flow formulations. For examples of the first we refer 
to Kobayashi et al.(1987) and Van Gent (1994). For examples of methods based on 
potential flow we refer to Klopman (1987) for the two dimensional case and to 
Broeze (1993) for a solver for three-dimensional flow. The shallow water equation 
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solvers cannot directly simulate wave breaking but need to add extra dissipation to 
simulate the wave height reduction caused by breaking. The potential flow solvers 
can solve the flow very accurately up to the moment where the flow domain becomes 
multiply connected as a result of the breaking process. After that moment these 
methods become unstable and the calculation breaks down. Solvers based on the 
MAC (Marker And Cell) or the VOF (Volume Of Fluid) method can solve the 
Navier-Stokes equation for breaking waves. 

THE 2D-NAVIER-STOKES MODEL 

The Volume Of Fluid method (Hirt and Nichols, 1981) has been made applicable 
for simulation of wave and flow phenomena on coastal structures (Petit & Van den 
Bosch, 1992 and Van der Meer et al., 1992). The model solves the two-dimensional 
incompressible Navier-Stokes equations with a free surface. 
For the treatment of the free surface a redistribution of water contained in the cells 
of the computational grid has to take place once the velocity is known. The method 
called FLAIR (Ashgriz and Poo, 1991) has been adopted for this purpose. Arbitrary 
free-slip boundaries can be introduced in the model to simulate breaking waves on 
impermeable coastal structures. The numerical simulation of the breaking process is 
not limited to the moment where the fluid domain becomes multiply connected. 

IMPROVEMENTS 

Recent improvements of the model involve the use of weakly reflecting boundary 
conditions that allow nonlinear waves based on a Rienecker and Fenton (1981) 
(R&F) formulation to enter the domain. Further improvements allow the simulation 
of overtopping at a dike, not only with respect to the volume of water, but also a 
detailed simulation of water running down the rear of the dike (Petit et al. 1994). 
Furthermore, the simulation of flow through permeable structures has been made 
possible for the model (Van Gent et al. 1993) which, however, is beyond the 
framework of this paper. 

WEAKLY REFLECTING BOUNDARY CONDITIONS 

In Figure 1 we show a situation where weakly reflective boundary conditions are 
needed at both sides of the model. 
The waves are assumed to enter the domain at the left. They are given by the free 
surface elevation r\in(x0,t), and the velocity components ujn(x0,y,t) and wjn(x0,y,f) in 
x- and y direction respectively. At the right boundary the incoming waves are set to 
zero, although the model allows waves to be sent in from both sides. The equations 
which prescribe the weakly reflecting boundary conditions at the left boundary are: 

l-Cn-nJ-cftn-n^-rO!-^) (D 
at ox 
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dt '"       dx 

(3) 

Here, it is assumed that at the boundary the free surface elevations and the velocity 
components can be decomposed as the sum of a wave travelling to the right and a 
wave travelling to the left. For the surface elevation at the left boundary this 
becomes: 

1 CM) = 1«(*+C0 + Tli.(*-C0 

WEAKLY REFLECTIVE BOUNDARY  CONDITIONS 

FREE  SURFACE 

IMPERMEABLE  SLOPE 

Figure 1  Model application with two weakly 
reflective boundary conditions 

In the case where r=0 this signal 
satisfies    the    weakly    reflecting 
boundary condition (1) perfectly. 
If, again for the case of r=0, r\ is 
replaced by  \\+d where d is a 
constant, equation (1) will still be 
satisfied. This means that a change 
in the time averaged water level 
caused by inaccuracies in the code 
will   not   be   corrected   by   the 
boundary   conditions.   The   same 
problem  occurs   for  the  weakly 
reflective boundary condition for 
the x- velocity component (2). We 
have experienced that in using free slip boundary conditions at the bottom unrealistic 
average velocities can develop during lengthy computations. By choosing r equal to 
a small positive constant a time averaged value for the free surface elevation t| and 
for the velocity in x direction u can be prescribed. Although the amplitude of 
the incoming signals will be reduced for positive values of r, small values like 
r = «/5 which theoretically reduce the amplitude by a factor of 0.995 prove to work 
quite well. 
In order to test the quality of the weakly reflecting boundary conditions with 
incoming nonlinear waves, the velocities and the free surface elevation from the 
R&F solutions were used. At the left boundary of a numerical wave flume with a 
constant water depth, these waves were generated using a weakly reflecting boundary 
condition. At the right boundary again a weakly reflecting boundary condition was 
used to allow the waves to leave the domain undisturbed. At both boundaries of the 
Navier-Stokes model the velocities and the surface elevation were calculated and 
compared with the incoming signal. For a flume with the length of one wave length 
(wave height 0.2 m, period 3.0 s) the time series of the free surface elevation at the 
right and the left boundary are shown in Figure 2. Here we can see that, once the 
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initial disturbances have left the domain, incoming and outgoing signals match 
nicely. 

V  O) 

.0   3.0   6.0   9.0  12.0  15.0  18.0  21.0  24.0  27.0  30.0 

t (s) 

.left i ncomi ng wave, . _ _ right outgo ing wave. 

Figure 2   Time series of free surface elevation in a numerical wave flume in order 
to test the weakly reflecting boundary conditions at both sides 

IMPERMEABLE BOUNDARIES 

The velocity components used in the VOF method are defined at the centres of 
the cell faces. In order to discretize the spacial derivatives in the Navier-Stokes 
equations, velocity components at several locations are used. They are indicated by 
the arrow in Figure 3 for the case of the momentum equations in the horizontal 
direction. 

In order to model an impermeable boundary as indicated by the line, one could 
choose to change the stencil of velocity components such that none of the velocity 
components needed in the discretization is beneath the impermeable boundary. The 
disadvantage of this approach is that on a vector computer the vectorization of the 
computational process would be frustrated by the different treatment of the equations 
inside the fluid and at the boundaries. We wanted to avoid this problem and decided 
to define virtual velocities at those positions beneath the impermeable boundary. 
They are indicated by the dotted vectors in Figure 3. In Figure 4 an example of a 
submerged structure is shown where only the virtual velocities are given. 
The virtual velocities which are to be defined beneath the surface of the structure are 
determined by the boundary conditions at the surface. 
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Figure 3 Velocity components needed 
to discretize the horizontal 
momentum equations 

Figure 4 Virtual velocity components 
beneath the surface of the 
structure 

In the program only the free slip boundary condition was implemented. Both 
conditions at the impermeable surface now become: 

3MT 

dn 
-^=0 (4) 

u =0 (5) 

where un is the velocity component in normal direction to the impermeable surface, 
n the coordinate in this direction and «T the velocity component along the surface. 

The 14 cell categories which are identified in 
the program are shown in Figure 5. As can be 
seen here the impermeable boundary is to be 
modelled as a straight line inside each cell. For 
the case of category 4 we will examine how 
the virtual velocities can be determined. The 
velocity components shown in this figure are / 

those which are used to discretize the imper- 
meability and free slip condition. 

Figure 5 Examples of cell categories used in 
SKYLLA 
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By using the components of the normal unit vector at the part of the slope in this 
cell, nx and ny, the equations (4) and (5) can be rewritten as: 

2 dw     idu 
»v 

dx 
-«„ 

dy 
nxny 

du 
dx 

dw 
dy 

(6) 

nxu+nv = 0 (7) 

The velocity component shown in 
Figure 6 can be used to find a first 
order accurate approximation of the 
derivatives in the free slip condition 
at the collocation point indicated by 
the small circle in Figure 6. At his 
same position the impermeability of 
the slope can be approximated second 
order accurately by using linear 
interpolation. In this way two linear 
equations are found from which the 
virtual velocities can be determined. 
For each cell category the two virtual 
velocities involved are chosen such 

* 

1 

Figure 6 Virtual velocity components for a 
cell of category 4 

that all velocities needed for the discretization of the Navier-Stokes equation are 
available. Furthermore, the virtual velocities determined for one cell do not coincide 
with the virtual velocities of another cell. 
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Figure 7 Test for impermeable free-slip boundaries 
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In Figure 7 we show the result of a computation with a falling slope. The compo- 
nents of the velocity vectors shown here were determined as the averaged values of 
the velocity components at the boundaries of each cell. The velocities beneath the 
impermeable boundary are partially determined by the virtual velocities. As can be 
seen in this figure, the resulting flow near the structure is well aligned with the 
surface of the structure. 

OVERTOPPING BOUNDARY CONDITIONS 

Computations with the VOF method are very costly. Especially if the cell sizes 
are small the explicit time solver will need very small time steps to keep the 
computations stable. In each time step a Poisson pressure equation needs to be solved 
to ensure the incompressibility of the fluid. This leads to a set of equations to be 
solved for the pressure in each cell. The computational effort to solve the pressure 
equations is roughly proportional to (N*M)25 where N is the number of cells in 
horizontal direction and M the number in vertical direction. In cases where a low- 
crested structure is to be modelled the computation can be carried out applying two 
separate computational domains, provided that the flow at the top of the crest has 
supercritical velocity. 

registration  column I black  hole  column 

"^>"^ 

MODEL   1 

MODEL  2 

Figure 8 Registration and black hole column at different locations used in the two 
model approach 

The first part of the computation takes place in model 1 as indicated in Figure 8. At 
the right boundary indicated by 'black hole column' we use the boundary conditions 
ux = 0 and wx = 0. Furthermore, we set the F value equal to zero in this column 
each time step. The F values and velocity components are registered during the 
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computation in the 'registration column' each time step. The registered quantities are 
used during the second computation which involves the flow in model 2 as indicated 
in Figure 9. 
In a strict sense the incompressibility condition can only be satisfied in a simply 
connected domain by solving the pressure Poisson equation. We expect, however, 
that in the case where free slip boundary conditions are used and the layer of water 
at the crest of the structure flows with a supercritical velocity, the errors introduced 
by using this method will be small. 

VALIDATION OF WAVES ON A 1:20 BAR 

In order to gain insight in the performance of the numerical model, physical 
model tests were performed with waves on a submerged bar with a front slope of 
1:20. Here we did not use the two-model approach as the velocities at the top of the 
structure would not be supercritical. Incident regular waves broke on this bar as 
weakly plunging breakers. Figure 9 shows the experimental set-up used. The 
numerical set-up used in the verification runs was simpler because at the time the 
verification took place the falling slope option had not been implemented. Figure 10 
shows the left part of the slope used in the experiment. 

EXPERIMENTAL SET-UP 

-20.0 0.0 10.0 20.0 
X-AXIS (m) 

Figure 9 Bottom topography used in wave flume 

Velocity profiles at a large number of locations were measured with Laser-Doppler 
Velocity meters. Those positions are indicated by the blocks in Figure 10. The wave 
profile was recorded using a video camera. The position of the free surface was 
determined electronically from the video registration, which resulted in two or more 
lines in regions with much air entrainment. As the position of the free surface is 
not a variable in the VOF method the free surface had to be defined using the 
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F-function. This quantity is the volume fraction of the cell which is filled with fluid 
(which explains the name Volume Of Fluid). We chose the value F= 1/2 to define 
the location of the free surface. To send in waves into the numerical model we used 
solutions obtained by the R&F (1981) method. The parameters used to get this 
solution were obtained by comparing the free surface as prescribed by R&F with the 
measured free surface of the incoming waves assuming the reflected waves to be 
negligibly small. 

SKYLLA: VERIFICATION VELOCITIES 

6.0 8.0 
X-AXIS (m) 

12.0 14.0 

•   POSITIONS 

Figure 10 Schematized bottom used in numerical simulation 

The following wave parameters were found: 

Wave height 
Wave period 
Still water level 

0.29 m 
1.80 s 
0.80 m 

For the R&F solution we used 16 Fourier components. The mean Eulerian velocity 
was set to zero m/s. The resulting wave length of the incoming waves was 4.41 m. 
Comparison of the velocity profiles of the R&F solutions and the measured velocities 
showed that the crest velocities were somewhat too large wheras the trough velocities 
were underestimated in an absolute sense. We expect this to be caused by the fact 
that the undertow is assumed to be uniformly distributed over the vertical in the 
potential model solved by R&F. In practice, however, smaller velocities occur near 
the bottom and higher velocities more upward in the vertical. 
For the computation 480 cells were used in horizontal direction and 50 in the 
vertical. The kinematic viscosity was set to 0.001 m2/s. 
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After the numerical solutions had become periodic we started the comparison. 
Figure 11 shows the first of the comparisons. Here we see that once the waves start 
climbing the slope the wave length of the numerical waves become smaller than the 
measured value. 

SKYLLA: VERIFICATION SURFACE ELEVATIONS 

6.0 8.0 
X-AXIS (m) 

14.0 

• MEASURED CALCULATED 

Figure 11 

Here we can also see that, the breaking process in the numerical model takes place 
at the right position. Figures 12 and 13 show the comparison at time intervals of 
0.48 s. 
The effect of shoaling which is clearly visible in Figure 12 for the measured spilling 
wave at 8.5 m is not represented well in the numerical simulation. Furthermore, it 
can be seen in Figure 13 that the breaking process itself develops faster in the 
numerical model as the decrease in wave height is faster. The transmitted waves at 
the right boundary, however, were found to be rather accurate. 

In Figure 14 we show the measured and computed horizontal and vertical velocities 
at the left boundary of the model. The problems which arise when in using R&F 
solutions regarding undertow which were mentioned earlier, reduce the absolute 
velocity at the trough of the waves. In Figures 15 and 16 we show the comparison 
of these velocities at 5 and 9 m from the left boundary of the computational domain. 
All velocities shown here were measured at about 0.5 m from the zero level of the 
wave flume. 
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SKYLLA: VERIFICATION SURFACE ELEVATIONS 
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6.0 8.0 
X-AXIS (m) 

• MEASURED • CALCULATED T = TO   + 0.48 s. 

14.0 

Figure 12 

1.4 
SKYLLA: VERIFICATION SURFACE ELEVATIONS 

6.0 8.0 
X-AXIS (m) 

• MEASURED CALCULATED T = TO   + 0.96 s. 

14.0 

Figure 13 
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SKYLLA: VERIFICATION VELOCITIES 

1.5 2.0 
TIME (s) 

U-MEASURED 

U-CALCULATED 

W-MEASURED 

W-CALCULATED 

POSITION: 
X = 0.00 m 
Z = 0.50 m 

Figure 14 Comparison of measured and calculated velocities; u denotes horizontal 
velocities, w denotes vertical velocities 
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SKYLLA: VERIFICATION VELOCITIES 
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Figure 15 Comparison of measured and calculated velocities; u denotes horizontal 
velocities, w denotes vertical velocities 
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SKYLLA: VERIFICATION VELOCITIES 
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1.5 2.0 
TIME (s) 

U-MEASURED 

U-CALCULATED 

W-MEASURED 

W-CALCULATED 

POSITION: 
X = 9.00 m 
Z = 0.53 m 

Figure 16 Comparison of measured and calculated velocities; u denotes horizontal 
velocities, w denotes vertical velocities. 

CONCLUSIONS 

The VOF method has been made applicable for the computation of breaking 
waves on coastal structures. Verification with measurements has shown that the 
program can fairly well simulate waves on a structure. The differences with 
measurements found in the comparison can partly be explained by the way the 
boundary conditions were used to define the incoming waves. 
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