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NONLINEAR EVOLUTION OF DIRECTIONAL WAVE SPECTRA 
IN SHALLOW WATER 

Okey Nwogu1 

ABSTRACT 

Nonlinear aspects of the transformation of a multidirectional wave field in shallow 
water are investigated using Boussinesq-type equations. Second-order interactions 
between different frequency components in an irregular sea state produce lower and 
higher harmonic components at the sum and difference frequencies of the primary 
waves. For water of constant depth, expressions are derived from the Boussinesq equa- 
tions for the magnitude of the second-order waves induced by bidirectional, bichro- 
matic waves. These are used to investigate the effect of the direction of wave propa- 
gation on the near-resonant interactions that occur in shallow water. For waves propa- 
gating in water of variable depth, a numerical model based on a time-domain solution 
of the governing equations is used to the predict the spatial evolution of the directional 
wave spectrum. The results of the numerical model are compared to experimental re- 
sults for the propagation of bidirectional, bichromatic waves and irregular, multidirec- 
tional waves on a constant slope beach. 

1.    INTRODUCTION 

Surface waves in the ocean are short-crested or multidirectional with components 
of different amplitudes and frequencies, propagating in different directions. As sur- 
face waves propagate from deep to shallow water, the directional wave spectrum is 
transformed due to both linear and nonlinear processes. Linear refraction leads to a 
narrower directional distribution in shallow water, with the principal direction more 
closely aligned to the beach contours. Changes to the directional spectrum due to linear 
effects can be accurately predicted by linear refraction models (e.g. Longuet-Higgins, 
1957). However, Freilich et al. (1990) found that linear theory could not predict the 
amplitudes and directions observed in certain frequency bands in field studies. This is 
due to the near-resonant amplification of wave components induced at the sum and dif- 
ference frequencies of the primary waves. These wave harmonics could also propagate 
in directions quite different from those of the primary waves, resulting in substantial 
changes to the frequency and directional distribution of wave energy. 
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In shallow water depths, Boussinesq-type equations (e.g. Peregrine, 1967) are able 
to describe the near-resonant quadratic interactions that occur in shoaling multidirec- 
tional waves. Various time and frequency domain methods have been used to solve 
the two-dimensional form of the Boussinesq equations. Liu et al. (1985) developed a 
parabolic model for the shoreward propagation of individual wave components while 
Kirby (1990) proposed an angular spectrum model. Abreu et al. (1992) developed a 
shallow water spectral model in which near-resonant interactions were only consid- 
ered between colinear waves. In intermediate water depths, third-order interactions 
become the dominant nonlinear mechanism for the cross-spectral transfer of energy. 
Suh et al. (1990) have developed an angular spectrum model of the mild-slope equa- 
tion for Stokes waves which includes cubic interactions. 

In this paper, the Boussinesq model of Nwogu (1993) is used to investigate the ef- 
fect of near-resonant nonlinear wave-wave interactions on the transformation of direc- 
tional wave spectra in shallow water. Compared to the Boussinesq model of Peregrine 
(1967), the model proposed by Nwogu (1993) can be applied over a wider range of 
water depths due to improved frequency dispersion characteristics obtained by chang- 
ing the velocity variable from the depth-averaged velocity to the velocity at an arbi- 
trary distance from the still water level. Analytical expressions are derived from the 
Boussinesq equations for the bidirectional quadratic transfer function of the second- 
order waves induced in water of constant depth. These are used to evaluate the effect 
of the direction of propagation of the wave components on the near-resonant quadratic 
interactions that occur in shallow water. For irregular multidirectional waves propa- 
gating in water of variable depth, a numerical model based on a time domain solution 
of the equations is used to predict the spatial evolution of the directional wave spec- 
trum. The results of the numerical model are compared to experimental results for the 
shoaling of multidirectional waves on a constant slope beach. 

2.    THEORETICAL MODEL 

2.1    Governing Equations 

Boussinesq equations represent the depth-integrated equations for the conservation of 
mass and momentum for weakly nonlinear and mildly dispersive waves, propagating 
in water of variable depth. By assuming a quadratic variation of the velocity potential 
over depth, the governing equations of fluid motion can be integrated over the depth, 
reducing the three-dimensional problem to a two-dimensional one. The continuity and 
momentum equations can be expressed in terms of the water surface elevation, r}(x.,t), 
and the horizontal velocity, u„(x, t), at an arbitrary distance za from the still water 
level as (see Nwogu, 1993): 

m + v-[(h + v)ua] + 

v> ~-j) ftV(v • u«) + U + \) ftMv • (h"<*)} =   0   (1) 
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+ gVr] + (ua • V)u„ + ^V(V • uat) + zaV[V • (huat)} 0       (2) 

where V = (d/dx, d/dy), A(x) is the water depth and g is the gravitational accelera- 
tion. The elevation of the velocity variable za is a free parameter and is chosen to min- 
imize the differences between the linear dispersion characteristics of the Boussinesq 
model and linear theory. An optimum depth for the velocity variable, za = —0.53A, 
gives errors of less than 2% in the phase speed from shallow water depths up to the 
deep water depth limit. 

2.2    Second-Order Forced Waves 

As surface waves propagate, the different frequency components interact to produce 
wave components at the harmonics of the primary wave frequencies. The simplest ex- 
ample of this nonlinear phenomenon is the combination of two wave trains with dif- 
ferent frequencies. The nonlinear boundary conditions at the free surface result in the 
generation of forced waves at the sum and difference frequencies of the primary waves, 
to\ ±io2. The forced waves are bound or phase-locked to the primary waves or wave 
groups, and propagate in directions given by the sum and difference of the wavenum- 
ber vectors, kx ± k2. The magnitude of the forced harmonics can be determined by 
solving the governing equation of motion, with the free surface boundary condition 
satisfied at second-order in wave steepness. Starting from the Laplace equation, Dean 
and Sharma (1981) derived expressions for the magnitude of the forced harmonics for 
bidirectional, bichromatic waves, i.e. two waves with different frequencies, propagat- 
ing in different directions. We shall now derive corresponding expressions from the 
Boussinesq equations. Consider a wave train consisting of two periodic waves with 
frequencies, coi and u>2, amplitudes, <zi and a2, propagating in directions, 0t and #2 

respectively. The water surface elevation is given by: 

^'(x, t) = «i cos(ki • x — u>it) + a2 cos(k2 • x — w2£), (3) 

where k = (k cos 0, k sin 0). The angle, 8, is defined relative to the positive x axis. 
The individual waves are assumed to satisfy the first-order or linearized form of the 
Boussinesq equations, i.e. 

m a) + ftV • u^ + (a + \)h3 V • [V(V • u^)]    =   0, 

,W + gVv(l) + ah'VlV-u^)    =   0 m 

(4) 

(5) 

where a = (za/h)2/2 + (za/h). The wavenumber, k, is thus related to the wave 
frequency by the following dispersion relation: 

¥=gh 
+ \)(khf 

1 - a(khf (6) 
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The first-order horizontal velocities corresponding to the water surface elevation given 
by equation (3) can be determined from equations (4) and (5) as: 

u£)(x,<)   =   77-cos^1aicos(k1 • x-o^i) + •— cos #2a2 cos(k2 • x —w2i),   (7) 

v£\x,t)   =   —-sin6'1aicos(ki   x - w\t) + -j-sin#2a2cos(k2 • x- uj2t),    (8) 

where k' = k[l — (a + l/3)(kh)2]. At second-order in wave steepness, the surface 
elevation and velocities have to satisfy the following set of equations: 

+ hV • uW +L+
l\hzV. [V(V • u<2>)]    =   -V • (,WuW)      (9) (2) 

u£J  + gW2) + «A2V(V-u£>)    =   -(uW.v)uW (10) 

The second-order wave will consist of a sub-harmonic at the difference frequency, wi — 
u>2, and super-harmonics at the sum frequencies, 2wi, 2^2 and u>i +w2. It can be written 
as: 

r]W{x,t)   =   ^G+(t^,«1,fl1,fl1)co8(2k1-x-2wif) 

a2 

+   -^G+(L}2,UJ2, 02, 02) cos(2k2 • x - 2w2t) 

+   a1a2G±(wi,w2,6'1,^2)cos(k± -x-w±i), (11) 

where k± = kx ± k2, and G± (wi, w2, #i, 02) is a bidirectional quadratic transfer func- 
tion that relates the amplitude of the second-order forced wave to the first-order am- 
plitudes. The quadratic transfer function can be determined by substituting equations 
(3), (7) and (8) for the first-order surface elevation and velocities into the second-order 
equations (9) and (10), and solving for the amplitudes of the second-order surface el- 
evation and velocities. This leads to: 

^2{k±hf cos Afl[l- (a + j)(k±hf]   , 
GiO^AA)  =   ^T^i + 

w±[l - a(fc±fc)2][wi&2/i[fci/i ± k2hcos A0] + w2&J/i[fci/icos A0 ± &2A]] 
2A&i^A3 '(    } 

where A0 = 0i - 02, 

ifc± = |kj ± k2| = v/fc1
2 + fc2

2±2fc1fc2cosA0, (13) 

and 
A = <4[1 - a(fc±fe)2] - 5fc£fc[l - (a + l/3)(fc±/i)2]. (14) 
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Figure 1. Directions of the sum and difference of the wavenumber vectors. 

A = 0 is actually the dispersion relation for first-order free waves in the Boussinesq 
model (Eqn. 6). The second-order forced waves do not satisfy the linear dispersion 
relation because of the forcing terms on the right hand side of equations (9) and (10), 
unlike second-order free waves that satisfy the homogeneous part of the equations. The 
second-order interactions could be resonant (A —> 0) if the frequency and wavenumber 
of the forced wave corresponds to that of a free wave. This occurs to unidirectional 
wave trains in shallow water depths where the phase velocities of the forced waves are 
nearly equal to the phase velocities of free waves, leading to a near-resonant amplifi- 
cation of the second-order waves. Wave breaking and cross-spectral energy transfers, 
however, limit the amplitude of the second-order waves in shallow water. 

We shall now examine in detail, the differences between the magnitudes and direc- 
tions of propagation of the sub-harmonics and super-harmonics in unidirectional and 
bidirectional seas. The sub-harmonic component, which is commonly referred to as 
the set-down component, travels at the velocity of the wave group, u->_ / fc_, along a di- 
rection defined by the difference of the wavenumber vectors as shown in Figure 1(a). 
This direction could be quite different from the direction of propagation of the primary 
waves. If ki is nearly equal to k2, the second-order long wave would travel in a direc- 
tion almost perpendicular to the average direction of the first-order short waves. On a 
sloping beach, this might excite the edge (transverse) wave modes as discussed by Gal- 
lagher (1971). In contrast, the super-harmonics travel in a direction nearly coincident 
with the average direction of the primary waves as shown in Figure 1(6). 

The quadratic transfer function was evaluated for bidirectional waves with different 
angles of separation between the individual wave components. The transfer function 
of the sub-harmonic wave component is plotted in Figure 2 for an example where the 
frequency difference, ALO/LO = 0.1, with u>i = to — Aw/2 and LO2 = w + Aw/2. 
Three crossing angles, A0 = 0°, 10° and 20° were considered. Also shown in Figure 
2 are results obtained from expressions based on a second-order solution of the Laplace 
equation, derived by Dean and Sharma (1981). 

A number of interesting observations can be made from Figure 2. The first one is that 
for unidirectional waves, the Boussinesq model underestimates the magnitude of the 
set-down wave, particularly in intermediate water depths. However, for bidirectional 
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Figure 2. Bidirectional quadratic transfer function for the sub-harmonic component 
(Au/w = 0.1). 

waves, the differences between the Boussinesq and Laplace models becomes negli- 
gible. The second one is that the directionality of the waves leads to a significant re- 
duction of the set-down wave, as was noted by Sand (1982). In shallow water with 
u>2h/2xg < 0.05, the amplitude of the forced long wave for A9 = 10° is reduced by 
at least a factor of 5. This is because forced long waves in directional wave fields are 
not resonantly amplified in shallow water. Near-resonant amplification occurs for uni- 
directional waves because the wavenumber of the forced long wave | fa — k2 | is nearly 
equal to that of a free long wave k (w_), or equivalently, w_ and | fa — fa1 nearly sat- 
isfy the linear dispersion relation with A —> 0 in equation (12). In bidirectional seas, 
the magnitude of the wavenumber vector of the forced long wave, |ki — k2|, is sig- 
nificantly larger than that of the corresponding free wave &(w_) for small angles of 
separation. The forced waves are, thus, no longer close to satisfying the dispersion 
relation for free waves. 

The quadratic transfer function for the super-harmonics is plotted in Figure 3 for an 
example with Au/w = 0.1, and A8 = 0° and 40°. The forced higher harmonics are 
slightly reduced in bidirectional waves, but not as significantly as the sub-harmonic 
component. For u}2h/2ng = 0.05 and A0 = 20°, the super-harmonic component is 
reduced by 12%, compared to 90% for the sub-harmonic component. In contrast to the 
sub-harmonics, the super-harmonics in directional wave fields are resonantly ampli- 
fied in shallow water. This is because with the addition of the wavenumber vectors, the 
magnitude of of the wavenumber vector of the forced super-harmonic is closer to that 
of the corresponding free wave. The directional wave transformation model proposed 
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Figure 3. Bidirectional quadratic transfer function for the super-harmonic compo- 
nent (Aw /w = 0.1). 

by Abreu ef a/. (1992) assumes that near-resonant, second-order interactions only oc- 
cur between colinear waves in shallow water. The present analysis, does, however, 
show that second-order interactions between non-colinear waves in shallow water are 
near-resonant for the super-harmonic component, although the strength of the interac- 
tion decreases with increasing angular separation. 

3.    Time Domain Solution 

For waves propagating in water of variable depth, free second and higher-order waves 
are generated in addition to the forced waves. The bidirectional quadratic transfer 
function (Eqn. 12) can no longer be used to determine the amplitude of the wave har- 
monics. In this paper, we employ the time-domain model of Nwogu (1995) for irreg- 
ular multidirectional wave propagation in water of variable depth. The model solves 
the governing set of Boussinesq-type equations using an iterative Crank-Nicolson fi- 
nite difference method, with a predictor-corrector scheme used to provide the initial 
estimate. The computational domain is discretized using a rectangular grid, with the 
dependent variables r\, ua and va defined at the grid points in a staggered manner. The 
numerical solution procedure consists of solving an algebraic expression for r\ at all 
grid points, tridiagonal matrices for ua along lines in the x direction and tridiagonal 
matrices for va along lines in the y direction at every time step. Details of the third- 
order accurate scheme can be found in Nwogu (1995). 
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The boundaries of the computational domain may be specified as wave input bound- 
aries or solid walls. Along incident wave boundaries, time series of ua, ua<xx and vaiXy 

or va, va,yy and ua,xy, corresponding to regular or irregular, unidirectional or multidi- 
rectional sea states are input at the grid points. The time histories may be derived from 
target directional wave spectra using the random phase, single direction per frequency 
model of wave synthesis (see Miles and Funke, 1987). Waves propagating out of the 
domain are artificially absorbed in damping regions placed next to solid wall bound- 
aries. Artificial damping of wave energy is accomplished by introducing terms out 
of phase with the water surface velocity and fluid acceleration into the continuity and 
momentum equations respectively (see Nwogu, 1995). The output of the numerical 
model are time histories of 77, ua and va at desired grid points in the computational 
domain. Directional wave spectra estimates are obtained from the time records by us- 
ing the high resolution, maximum entropy method (Nwogu et al, 1987) 

4.    NUMERICAL AND EXPERIMENTAL RESULTS 

Laboratory experiments were also conducted to investigate the propagation of multi- 
directional waves on a constant slope beach. The experiments were carried out in the 
three-dimensional wave basin of the Hydraulics Laboratory, National Research Coun- 
cil of Canada. The basin is 30 m wide, 20 m long and 3 m deep and is equipped with 
a 60-segment directional wave generator. The individual wave boards are 0.5 m wide 
and 2 m high. Wave energy absorbers made of perforated metal sheets are installed 
along the other sides of the basin not occupied by the wave generator. A 1:25 constant 
slope beach with an impermeable concrete cover was constructed in the basin, paral- 
lel to the wave generator. The toe of the slope was located 4.6 m away from the wave 
boards. Bidirectional bichromatic waves and irregular multidirectional sea states were 
generated in the basin. The water depth in the constant depth portion of the basin was 
0.56 m. The water surface elevation along the centerline of the basin was measured 
with a linear array of 23 water level gauges. The experimental set-up is discussed in 
greater detail in Nwogu (1993). 

4.1   Shoaling of Bidirectional, Bichromatic Waves 

Consider the shoaling of a bichromatic wave train with component wave periods, Ti = 
1.65 s, T2 = 1.5 s, and heights, Hx = 0.041 m, H2 = 0.037 m. The tests were carried 
for both a unidirectional version with #i = 62 = 0°, and a bidirectional version with 
#1 = 30° and 92 = —15°. The spectral density of the measured surface elevation time 
history at location (h = 0.134 m) is shown in Figure 4 for the bidirectional wave train. 
In addition to second-order wave harmonics at 2/i, 2/2 and f% ± /2, third-order wave 
components are also observed at 2/i ± f2, 2/2 ± /i, 3/i, and 3/2, as well as some 
fourth-order components. 

The numerical model was used to simulate the propagation of the unidirectional and 
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Figure 4. Measured spectral density in shallow water for a bidirectional bichromatic 
wave train (A0 = 45°, h = 0.134 m). 

bidirectional wave trains on the 1:25 beach. The simulations were carried out using a 
time step size At = 0.05 s, and spatial grid sizes Ax = 0.1 m and Ay = 0.2 m. A con- 
tour plot of the instantaneous water surface elevation in the basin for the bidirectional 
wave train is shown in Figure 5. The variation in amplitude of a select number of wave 
harmonics along the centerline of the basin are plotted in Figure 6 for the unidirectional 
wave train, and Figure 7 for the bidirectional wave train. The experimental results are 
also shown in the figures. The Boussinesq model is observed to reasonably predict the 
measured variation in amplitude of the first-order waves and higher harmonics. The 
model, however, underestimates the magnitude of the set-down component for the uni- 
directional wave in shallow water. The simulated set-down wave has an amplitude of 
0.003 m at h = 0.134 m, while the measured wave has an amplitude of 0.006 m. The 
numerical model underestimates the magnitude of the long period wave partly because 
it does not simulate the reflected free waves that are generated after wave breaking and 
runup. 

The ability of the numerical model to predict the change in wave direction between the 
deep and shallow water depths was also examined. The maximum entropy method, de- 
scribed by Nwogu et al. (1987), was used to estimate the directional distributions at 
different frequency bands from the simulated rj, ua and va time series. The directions 
in the deep (h = 0.56 m) portion of the basin are 0(/i) = 30° and 6(f2) = -15°. At 
h = 0.134 m, the Boussinesq model predicts 0(f1) = 18° and 6(f2) = -13° while 
Snell's law predicts 6(h) = 27° and 9{fi) = —13°. Good agreement is observed for 
the —15° wave but not the 30° wave. The differences are primarily due to diffraction 
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Figure 5. Contour plot of instantaneous water surface elevation for a bidirectional 
bichromatic wave train shoaling on a 1:25 beach ($i = 30°, 62 = —15°). 
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Figure 6. Variation in amplitude of wave harmonics for a unidirectional bichromatic 
wave train shoaling on a 1:25 beach (A0 = 0°). 
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Figure 7. Variation in amplitude of wave harmonics for a bidirectional bichromatic 
wave train shoaling on a 1:25 beach (A0 = 45°). 

effects caused by the finite width of the wave generator. The effect of diffraction is 
more important in the shallow portion of the basin for oblique waves with large an- 
gles of incidence. For the second-order higher harmonics, the numerical model pre- 
dicts 0(2/,) = 19°, B(fl + /2) = 2°, and 0(2/2) = -12°. The predicted direction 
for the sum frequency component is within 2° of that determined from the sum of the 
wavenumber vectors. 

4.2    Shoaling of Irregular Multidirectional Waves 

Consider the shoaling of a bimodal sea state with local sea and swell components on 
the 1:25 beach from deep (h = 0.56 m) to shallow water (h = 0.18 m). The incident 
sea states were synthesized using the random phase, single direction per frequency 
model of wave synthesis (see Miles and Funke, 1987). The JONS WAP spectrum was 
used to describe the frequency distribution of wave energy while the parametric cosine 
power function was used for the directional distribution. The local sea component has 
a significant wave height, Hmo = 0.062m, peak period, Tp = 1.5 s, peak enhancement 
factor, 7 = 3.3, and a directional distribution defined by D(6) = cos12(# — 22.5°). 
The swell component is characterized by Hmo = 0.068 m, Tp = 2 s, 7 = 10, and 
D(9) = cos44(# + 22.5°). The incident directional wave spectrum is shown in Figure 

The Boussinesq model was used to simulate the shoaling of the bimodal sea state with 
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Figure 8. Numerically simulated directional spectrum of a bimodal sea state in deep 
water (h = 0.56 m). 

time step size, At = 0.05 s and spatial grid sizes, Ax = 0.1 m, Ay = 0.2 m. Fig- 
ure 9 shows a comparison of the wave spectrum at h = 0.56 m with the measured and 
predicted spectral densities at h = 0.18m. Reasonably good agreement is observed be- 
tween the measured and predicted wave spectra. Directional spectral estimates were 
also obtained from the simulated -q, ua and va time histories using the maximum en- 
tropy method (Nwoguef al., 1987). The predicted directional spectrum at h = 0.18m 
is shown in Figure 10. Nonlinear wave-wave interaction effects in the shoaling process 
substantially change the directional wave spectrum, with the transfer of energy across 
frequency and direction bands. There is a growth of the second, third and fourth har- 
monics of the swell component, and the generation of components at the vector sum of 
the local sea and swell components, and the vector sum of the local sea and second har- 
monic of the swell component. Such modifications of the directional wave spectrum 
can only be obtained with the use of a model that simultaneously treats nonlinearity 
and directionality in shoaling waves. 
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5.    CONCLUSIONS 

A Boussinesq model has been used to investigate the effect of near-resonant nonlinear 
interactions on the transformation of directional wave spectra in shallow water. The 
amplification of second-order components induced at the sum and difference frequen- 
cies of the primary waves is near-resonant for unidirectional waves in shallow water. 
In multidirectional sea states, however, the second-order interactions are near-resonant 
for the higher harmonics but non-resonant for the lower harmonics. This leads to a sig- 
nificant reduction in magnitude of the long period waves induced by shoaling multi- 
directional waves. The spatial evolution of the directional wave spectrum in water of 
variable depth was predicted using a time domain Boussinesq model, and the maxi- 
mum entropy method for directional wave analysis. The numerical model, which in- 
cludes the effects of shoaling, refraction, diffraction and reflection, was able to pre- 
dict a substantial modification of the directional wave spectrum in shallow water due 
to near-resonant nonlinear interactions. 
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