
CHAPTER 34 

COUPLED VIBRATION EQUATIONS FOR 
IRREGULAR WATER WAVES 

Masao Nochino* 

Abstract 
A new system of equations is proposed for calculating wave deforma- 

tion of irregular waves under the assumption of small amplitude wave 
and of mild slope of bottom configuration. The system is composed of 
a vibration equation for water surface elevation and three elliptic equa- 
tions defined in horizontal plane. These equations are coupled each other. 
The coupled vibration equations are capable of calculating water surface 
elevation of irregular waves in a time domain. 

1    Introduction 

Some equations have been proposed for the deformation of water waves; the mild 
slope equation by Berkhoff(1972), the unsteady mild slope equation considering 
wave-current interaction by Liu(1983), Boussinesq equation by Pregrine(1978). 
The mild slope equations are able to apply only for a simple harmonic wave. 
The Boussinesq equation is derived for nonlinear long waves. The equation to 
calculate the deformation of irregular waves including long waves is expected for 
the coastal structure design and the analysis of coastal process. 

Kubo et. al.(1992) modified the time-dependent mild slope equation by 
applying the Fourier expansion technique to the coefficent in the mild slope 
equation. The modified mild equation is capable of simulating random waves 
without long waves. Nadaoka et. al.(1993) proposed the fully-dispersive wave 
equation capable of simulating random waves with long waves. 

In this paper, a new system of equations is proposed for calculating the 
deformation of the linear and irregular water waves including long waves. The 
waves are expressed as motions of coupled vibrations. The system of equations 
are applicable for the waves in the range of deep water depth to very shallow 
water depth. 
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2    Theory 

2.1 Basic equation 

The motion equations and the equation of continuity are expressed as follows 
under the assumption that the motion due to waves be small and the nonlinear 
terms in the motion equations be negligible. 

= 0 (1) 

= 0 (2) 

= 0 (3) 

= 0 (4) 

where, p; the fluctuating pressure defined as 

p = p/p + QZ, (5) 

x,y ;the coordinates in horizontal axes , z ; the vertical coordinate in upward 
direction with the origin at still water surface, p ; the pressure, p; the water 
density, g; the gravitational acceleration, u,v,w; the water particle velocity in 
x, y, z direction, respectively. Taking divergence of the motion equation, the 
Laplace equation of the fluctuating pressure p are given as follows. 

Ap = 0 (6) 

In this paper, Equation(6) is treated as the basic equation and p, the main 
variable as same as the water surface elevation r\. 

2.2 Boundary conditions 

There are three boundary conditions; two boundary conditions at free surface 
and one at bottom. These boundary conditions should be expressed by the main 
variable and linearized as the motion equations are linearized. 

The dynamic and kinematic free surface boundary conditions are expressed 
as follows. 

p= gi]        &t z = 0 (7) 

-£• = w        at z = 0 (8) 

The motion equation should be satisfied at free surface. Eliminating the vertical 
velocity w in above equation by using the motion equation in vertical direction, 
Eq. (3), the kinematic boundary condition, Eq.(8), can be expressed as follow. 
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The boundary condition at bottom (z — —h) is commonly expressed as 
follow. 

dh       dh , .„„. 
u— + v— + w - 0 at z = -h (10) 

ox       ay 

where, h = h(x, y) indicates the water depth. Derivating above equation with 
respect to time and applying the motion equations (l)-(3), the following equa- 
tion is given as the boundary condition at bottom expressed by the fluctuation 
pressure. 

Vp-Vh + YJ =0        at 2 =-ft (11) 

where V = (d/dx, d/dy) indicate the differential operator in horizontal plane. 

2.3    Expansion series of fluctuating pressure 

The fluctuating pressure p is expanded by using the series of Legendre's Poly- 
nomials P„(z) as follows. 

oo 

P =   E QmP2(m-l)(~z) (12) 
m—l 

where qm = qm(x, y, t) is the coefficient of mth term, and 

z = l+z/h. (13) 

The variable z is defined in the interval of [0,1] as the coordinate z is defined in 
[-h,0] for the linearized theory. The Legendre's Polynomials Pm(z) are defined 
as follows. 

1      Am 

Po{~2) = l,    pra(5) = ___(i*_ir>    m=l,2,... (14) 

For example, 

P2(~z) = l(3~z2 - 1),    P4(~z) = i(3524 - ZOz2 + 3),    etc.. (15) 

The series of Legendre's Polynomials P2(m-i)(z) have the property of the series 
of the orthogonal functions. 

J     P2(m-l)(z)P2(n-l)(z)dz     =      I 
0,     for m ^ n 

for m = n 4m-3> 

(m,n= 1,2,---) (16) 

The above relation implies that all coefficients qm in Eq.(12) be uniquely deter- 
mined. 
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The expression by the infinite series in Eq.(12) is not suitable for a numerical 
calculation. Let's suppose, in this paper, that the fluctuating pressure p be 
expressed by the series of the first 4 terms in the right side of Eq.(12), such as 

P = qiPo(z) + ftA(*) + tfA(2) + q4P6(z). (17) 

The dynamic and kinematic boundary condition at free surface are rewritten 
as follows by substituting Eq.(17) into Eqs.(7) and (9). 

91 = 9i + 92 + 93 + 94 (18) 

d2n        1 
•gjZ = -^(392 + 1193 + 21<?4) (19) 

2.4      Depth integrated equation 

There are five unknown variables; r](x,y,t),qm(x,y,t),(m — 1,2,3,4). All vari- 
ables are the functions defined in horizontal plane. There are two equations, 
Eqs.(18) and (19) which relate the five unknown variables. Therefore, three 
more new equations are required in order to solve the five unknown variables, 
instead of Eq.(6) defined in three dimensional space. 

The Galerkin method is applied to Eq.(6) to make up the three new equa- 
tions. 

/ _°fe iV-i)(2) A Pdz + A(m-i)(0) (Vft • Vp + 2 = 0 (20) 
-h 

(for   m = l,2,3) 

The second term in left hand side of the above equation is added so that the 
boundary condition at bottom, Eq.(ll) is satisfied. Integrating the above equa- 
tion and eliminating the coefficient 94 by using Eq(18), the following equations 
are given. 

y2 i + V(88<?1+24g2-88<?3)v/t   21gi + 18ft + lift 
128/i ft2 

_ 40gVrjVh     2lgrj 
128/i W 

2        V(-190gi+258g2 + 33093)T7,      909! + 90ft + 55ft 
V<Z2 + 128ft V/l h?  

_    lZOgVrjVh     90gt] 
~ 128ft W 

2        V(999i - 693ft - 205ft) 999l + 99ft + 99ft 
V<?3 + 128ft Vh Al  

_ 333ffV??V/t     99grj 
128ft W 

(21) 

(22) 

(23) 
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When deriving the above equations, the assumption for the mild slope of the 
bottom configuration is applied; the terms related V2/i and |V/i|2 are neglected. 

The Eq(19) can be rewritten as follows by eliminating g4 in a same manner. 

d2n 1 
-^ = --(2lgr]-21q1-l8q2-l0q3) (24) 

Eq.(24) shows the form of a vibration equation for the water surface elevation 
T) with the exciting force as a function of <ft, qi and 93. The variables qi, qi and 
qz are determined by the Eqs. (21)-(23) which has the form of the elliptic 
equation defined in the horizontal plane with the exciting term as a function of 
T). Eqs.(21)-(24) are coupled each other. The variables rj and qm are in phase. 
Therefore, the system of Eqs.(21)-(24) expresses the water waves as the system 
of motions of the coupled vibrations, not as a system of wave equations. 

The system of coupled vibration equations are expressed by the water depth 
h and the constant coefficients. The system is independent to both the wave 
frequency and the wave length L. 

3    Dispersion Relation of Coupled Vibration 
Equation 

The system of coupled vibration equations satisfy the dynamic and kinematic 
boundary condition which are linearized. Applying the coupled vibration equa- 
tions for water waves, the dispersion relation of the coupled vibration equation 
should be coincide with the one of the small amplitude theory (Airy's wave 
theory). 

Suppose the monochromatic wave progressing in the x direction with angular 
frequency of a, wave number of k on the water of uniform depth h. The water 
surface elevation r\ and the coefficients qm can be expressed as follows, 

r1 = %t{qei(kx-''t)} (25) 

qm = »{qmei(kx-^} m = 1,2,3,4 (26) 

as 77 and qm are in phase, where, 5ft denotes the real part and " the complex 
amplitude. Substituting above equations to Eqs.(21)-(23), the coefficients qm 

are obtained as function of r\. 

= 21g??(495 + 60(fcfe)2 + (fc/t)4) 
qi      10395 + 4725(kh)2 + 210(khy + (khf {    ' 

= 45gV(kh)2(77 + 2(kh)*) 
q2     10395 + 4725(fc/i)2 + 210(ifc/i)4 + {khf l    ' 

q3 = ^w  (29) q3      10395 + 4725(fc/i)2 + 210(khf + (khf K    ' 

„ = 9V{khf  
qi      10395 + 4725(tt)2 + 210(tt)4 + (fc/i)6 {    ' 
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Substituting the above equations into Eq.(24), the relation between the angular 
frequency a and the wave number k is finally obtained as follows. 

a2h _       21(fc/i)2(495 + 60(kh)2 + (fc/t)4) 

~g~ ~ 10395 + 4725(>/j)2 + 210(fc/i)4 + {khf ^    ' 

This relation is the dispersion relation for the system of coupled vibration equa- 
tions and corresponds to the one in the Airy's wave theory. 

— = kh tanh kh (32) 
9 

koh dispersion relations 

20 

15 

10 

[Small Amp.   Theory 
[Present  Theory(3   terms) 
[Present  Theory(4  terms) 
[Present  Theory(5  terms) 

5 10 15 

Figure 1: Comparison of dispersion relations 

kh 

Figure 1 shows the relation of Eq.(32) by the solid line and of Eq.(31) by the 
broken line. The left hand side of these equations <J2h/g are expressed by k„h 
in the figure. The left two lines in the figure indicate the dispersion relation in 
the case that the first 3 and 5 terms are adopted in the Eq.(12)( see Appendix). 

The dispersion relation of Eq.(31) coincide very well with the one of Airy's 
wave theory in the rage of kh less than 7(h/L ~ 1). This results implies that 
the system of coupled vibration equations be capable of expressing the waves on 
the very shallow water depth to the deep water depth. 

Group velocity is important factor for waves deforming in a shallow water 
region and wave groups progressing in a deep water region. The group velocity 
Cg is defined by the gradient of the angular frequency a with respect to the wave 
number k, that is, 

C9 = %- (33) 
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The Eq.(31) gives the Cg/C of the coupled vibration equation by differentiating 
the equation with respect to k, where C denotes the phase velocity. 

30 343035 + 83160A;/i2 + 14049fc/i4 + 564kh6 + lOkh8 

(34) C£ =  
C      495 + 60/fc/i2 + kh* 10395 + 4725fc/»2 + 210fc/i4 + kh6 

The Figure-2 shows the Cg/C due to the Airy's wave theory and to the present 

0.8 

0.6 

Group Velocity factor Cg/C 

0.4 • 

0.2 • 

,-Small Amp. Theory 

/Present Theory(3 terms) 

/Present Theory(4 terms) 

/Present Theory(5 terms) 

10 
kh 

Figure 2: Comparison of group velocity 

theory with the first 3, 4 and 5 terms as same as Figure-1. The group velocities 
due to the present theories in Figure-2 show less accuracy as comparing to the 
Airy's theory than the dispersion relation in Figure-1. This decrease of the 
accuracy is caused by differential calculus of the dispersion relation, Eq.(31) in 
order to obtain the group velocity. 

Eq.(31) indicates the form of a Pade approximation for the right side of 
Eq.(32). The accuracy of differential coefficient of the approximated function is 
generally less than of the approximated function. 

4     Calculation Method and Results 

4.1     Incident boundary 

The time series of water surface elevation is commonly measured in both field 
measurement and laboratory test. The position at measuring point of off-shore 
waves is generally treated as the incident boundary in most of calculations. In 
the calculation of the coupled vibration equations for irregular water waves, 
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the water surface elevation r\ and the coefficients qm should be given at the 
incident boundary. The measured data give the water surface elevation ??,•„ at 
incident boundary. The coefficient qm is calculated by Eqs.(27)-(30) when the 
wave number k is given. 

The wave number k is determined by the following method. The wave num- 
ber k and the angular frequency a for irregular waves are assumed to be a 
function of time and satisfy the following equations. 

{a{t)}2 = gk(t) tanh k(t)h (35) 

^ = -W')}V (36) 
The second equation gives the angular frequency changing with time and the 
wave number is determined by the first equation. The angular frequency, how- 
ever, becomes infinity when the r]in is nearly equals to zero in the computer 
calculation. In order to avoid this problem, the complex water surface elevation 
£ is used instead of rj. the complex water surface elevation £ is defined as 

C(«) = fa + ifkn, (37) 

where, TJ,-„ is the Hilbert transform of r?,„ and i is the imaginary unit. 7j;„ is 
calculated by the following relation. 

!H(u)   , for w > 0 
0   , for u = 0   , (38) 

-H(u)   , for w < 0 

where H{u>) and H(ui) are the complex Fourier transforms of r)i„ and »/;„, re- 
spectively. Finally, the angular frequency a(t) is redefined by the complex water 
surface elevation £(£). 

,2_ «>KcM2 
{ff(t)}

2 = -»|-^—| (39) 

4.2    Calculation results 

Eqs.(21)-(24) are applied to the waves progressing in one direction on the con- 
stant water depth, 7m. The waves is composed of the two wave groups; WAVE-A 
of which the dominant wave period is 9s and WAVE-B, 3s. Each wave group has 
a very narrow spectra, but is not monochromatic waves. That is, the waves cal- 
culated in this paper are parts of the components of the uni-directional irregular 
waves. 

The finite difference method is applied for the equations. The time interval is 
0.183s, the distance of calculation nodes; 0.73m, the number of nodes; 2800. The 
water channel is 2km long and one end of the channel is a reflection boundary. 

The calculated results are shown in Figure 3 as the snapshots of the water 
surface elevation per 37.5s. In the Figure, each wave group progresses with the 



COUPLED VIBRATION EQUATIONS 463 

each group velocity. Each wave group stretches with progress because of the 
frequency dispersion. The WAVE-A started later catches up with, passes the 
WAVE-B started earlier, then, reflects at the end, again meets with, and passes 
through the WAVE-B. 

These results are a matter of course as the liner wave theory. A point is 
that the results are calculated in the time domain by the system of the coupled 
vibration equations. 

5    Discussion 

In the present theory, the fluctuation pressure p is expanded to 4 terms in Eq.(17) 
with the coefficients from q\ to q4. There is, however, no g4 appeared in the final 
form of the coupled vibration equation in Eqs.(21)-(24). The evolution problem 
is calculated without 94. 

The vertical distribution of fluctuation pressure p in Airy's theory is given 
as follows. 

„ _     cosh k(h + z) _     cosh khz 

cosh kh cosh kh 
The right side of above equation can be exressed by the Taylor expansion. 

„ (1+^+<^A+0um    (4I) 
*     coshkh V 2! 4!       ) V       6! 

Comparing Eq.(17) and above equation, the coefficient g4 corresponds to the 
resident term in the right side of above equation. The coefficient 54 indicates 
the truncation error of the coupled vibration equations. 

The combined kinematic-dynamic free surface boundary condition is given 
as 

W = ~9TZ 
(42) 

in the linear water wave problem based on the velocity potential theory. Assum- 
ing that the velocity potential $(a;, y, z,t) is expressed as the following form, 

,. .coshkfh + z) ,,„. 

Eq.(42) is rewritten as follow. 

-XTJ = — gk tanh khcf> (44) 

This equation has the form of a vibration eqauiton. Expressing water waves as 
the form of vibration equation is a traditional and natural method. The coupled 
vibration equations, however, express the any shape of vertical distribution of 
the fluctuating pressure instead of an unique shape of vertical distribution such 
like the velocity potential in Eq.(43). 
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6     Conclusion 

The system coupled vibration equations is derived for water waves progressing 
on the water with mild slope of the bottom configuration. The motion of water 
surface elevation is expressed by the vibration equation with the coupled exciting 
force. The new system of equations is able to be applied for the random waves 
composed by the monochoromatic waves whose relative depth h/L is less than 
1. 

REFERENCES 
Berkhoff, J. C. W.(1972): Computation of combined refraction diffraction. Proc. 

13th ICCE, ACSE, New York, pp.471-490. 
Kubo, Y. , Y. Kotake, M. Isobe and A. Watanabe(1992): Time dependent mild 

slope Equation for random waves., Proc. 23rd ICCE, pp.419-431. 
Nadaoka, K. and Y. Nakagawa(1993): Fully nonlinear-dispersive wave equations 

derived by a Galerkin formulation., Meet'n '93, ASCE/ASME/SES Abstracts, p.724 
Liu, P. L.-F.(1983): Wave-current interactions on a slowly varying topography. J. 

Geophys. Res., \o\.88(C7), pp4421-4426. 
Pregrine, D. H.(1967). Long waves on a beach. J. Fluid Mech., Vol.27, pp.815-827 



1 

'o 
-1 

1 

l 

-i 
i 

•Ho 
-l 
I 

Tlo 
-1 

1 

% 
-1 

1 

1 

n> 
i 

TI0 

i 
^0 
-1 

1 

Tlo 
-1 

1 

Tlo 
-1 

1 

Tlo 
-1 

1 
Tlo 

•"-500 

COUPLED VIBRATION EQUATIONS 465 

t= 112.5S 

-^tttter t=150.0s 

^yv^ .U 187.5s 

U 225.0S 

U 262.5s 

•"vwWUfgjjy^ J=5Q0JJs_ 

-iWPW^"— ' 15.M V\AA^ t = 337.5s 

. • "wwwWWWWWWWg^ 

 "^WWWWWMMQMjWW^""' 

 ^ww^MWi^M/ywwwwww 

-^^yw^/vvAAA^ 2500 

t = 562.5s 

— 500' ] ' 'ifivVVVWww^^ •-* 

A A A t = 637.5s 
~" ' soo^VVW'W^is'oo' ^'»m*l^^mm»w^r^0  -   x 

A A A A t = 675.0s 
^AA/VVV'^oT'—*     '     'is'oo --^^fmmmmm^^    x 

Figure 3: Propagation of two wave groups 
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APPENDIX 

Equations for 3 Terms 

9V = 9i + 92 + 93 (45) 

„2     ,  V(3q1 + 7q2)T7U    Wqi + 7q2      ZgVrjVh      IQgr) 
V<11+          Ah         Vh          ft2        =       4fc             ft2 (46) 

_2        V(-10«i - lift)-,      35gi+35g2        5ffV»?V/i     35firr? 
V<?2 +             Ah            Vk            h*        =         2h            ft2 (47) 

d2n        1 
^i = --(10OT-10gi-7ft) (48) 

Equations for 5 Terms 

0*7 = 9i + 92 + 93 + 94 + 95 (49) 

2     ,  V(35gi + 99g2 - 13& + 75^)^,, 
V qi + 64ft Vk 

36gi + 33g2 + 26g3 + 15g4 _ 35gV??Vft _ 3Qgrj 

ft2 ~      64ft hF~ 

2     , V(-95gi-lllg2 + 65g3-210)r7, 
V92 + — Vh 

165gi + 165g2 + 13093 + 75g4 _    95ffV??Vh _ 165g?? 
ft2 64h      ~    ft2 

2     , V(6399l + 351g2 + 571g3 + 157594)^,, 
V<?3 + 256h Vk 

234gx + 234g2 + 234g3 + 135g4 _ 639ffV??V/t _ 234gr; 

ft2 ~      256/i W~ 

_2        V( 1222?! + 106692 + 179493 + 129l94)_L 
VQi 256ft Vk 

195gi + 19592 + 19593 + 19594 _    1222gVr?Vft     195g?? 

ft2 ~ 256ft ft2"" 

(50) 

(51) 

(52) 

(53) 

d2n        1 
-^ = -^(36<w - 3691 - 3392 - 2693 - 15g4) (54) 




