
CHAPTER 27 

Probability of the freak wave appearance in a 3-dimensional 
sea condition 

Akira Kimura1 and Takao Ohta2 

Abstract 

In this study, the appearance probability of the freak 
waves is theoretically introduced applying the definitions 
by Klinting and Sand (1987). Their three conditions are 
formulated theoretically applying the probability 
distributions for the run of wave heights (Kimura,1980) and 
the distance of a mean point of the zero-crossing wave crest 
and trough from mean water level (Kimura and Ohta, 1992b). 
Its appearance probability in a uni-directional irregular 
wave condition is studied first, the theory is extended then 
to the 3-dimensional wave condition, and the definition is 
discussed in terms of the probability in the last. 

1. Introduction 

The term "freak waves" may be used to express a huge 
wave in height. Freak waves have been seen and reported in 
many places in the world. Many fishing boats, even a man of 
wars have been destroyed by exceptionally huge waves. And 
the possibilities have been pointed out that the recent 
disasters on break waters at port of Sines (Portugal), 
Bilbao (Spain), (per Bruun, 1985) are also due to the freak 
waves. Although a common recognitions "what is the freak 
wave" may not have been established yet, it may have 
following properties as described by per Bruun (1985). 

It is a single "mammoth" short crested wave with, 
apparently, little relation to its neighboring waves. It has 
a high crest but not necessarily a corresponding pronounced 
trough. It does not stay long but break down in small waves. 

In 1987, clear definition was made by Klinting and 
Sand as, 
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(1) it has a wave height higher than twice the significant 
wave height, 

(2) its wave height is larger than 2 times of the fore-going 
and the following wave heights, 

(3) its wave crest height is larger than 65% of its wave 
height. 
Recently, only the first condition may be used for the 

definition (Sand, 1990). However very large appearance 
probability is given if only the first condition is used. 
Furthermore the idea that there is a big jump in wave 
heights, is not realized in the recent definition. The 
present study applies three all conditions by Klinting and 
Sand theoretically in the cases of uni-directional and 
directional random sea conditions. The importance of the 
conditions is compared and examined through the individual 
probability. 

2. Definition for freak wave 

Three conditions given by Klinting and Sand (1987) are 
as follows. 

If we have a following time series of wave height, 

H 
j-i' Hj' H: i+i' 

and if H5 is the freak wave (Fig.l), the definition by them 
is expressed as, 

(1) 
(2) ^  -   rj_,   , 

and   H, > 2H 
(3) 

Hj    >    Hl/3' 

H,   >   2R, 
3   -     -"j+i   ' 

Tij  >   0.65H., 

(Condition 1 ) 
(Condition 2A) 
(Condition 2B) 
(Condition 3 ) 

H 

2H./3 

H./3 

/\ 

j-i       J       M 

Fig.l Time series of wave heights. (H. is the freak wave) 
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in which H1/3 is a significant wave height and r^ is a crest 
height of Hj. 

3. Probability distribution of wave heights 

The wave height distribution for the zero-crossing deep 
water irregular waves agrees well with the Rayleigh 
distribution. However the agreement of data and distribution 
in a very large part of wave height has not been sufficiently 
investigated yet. Goda (1985) reported the measured data 
show slightly larger probability of appearance than the 
Rayleigh distribution in a large part of the distribution. 
Kimura (1981), Mase (1986) reported that increasing non- 
linearity on wave profiles brings narrower wave height 
distribution. However Yasuda (1992) showed the non-linearity 
brings about no significant difference on wave height 
distribution when the waves are those of fully saturated in 
a deep sea condition. 

If a physical mechanism in which the freak waves are 
brought about differs from other wind waves, there is a 
possibility that the freak waves do not follow the statistical 
law for irregular wave heights. Per Bruun (1985) pointed 
several phenomena such as orthogonal crossing of waves, 
overtaking of waves. However numerical simulations for the 
waves from two separate wind wave sources showed no significant 
difference in the wave height distribution from the Rayleigh 
distributions. Therefore we apply the Rayleigh distribution 
for the wave height distribution in this study. Further 
assumption used in this study was that waves are those of' 
fully saturated in deep water condition. 

4. Formulation of the condition 2A and 2B by Klinting and 
Sand 

If the time series of wave height, 

 '   Hj-i>   Hj' Hj+i'   

forms a Markov chain and its transition probability is given 
by the normalized 2-dim. Rayleigh distribution (Kimura, 
1980), the probability for the condition 2A is given as 
follows. 

The probability of the first "jump" from H^ to Hi (Bi 

>  2H.J.!) is given as 

rHjl 2 rHj+dH 
dHA p(HhH-,)dHo 

pu(H,) dH= , (1) 
^ lI     •> l-Hj + dH 

p{H{) dH, 
JH

J 

in which p(HlfH2) is the 2-dim. Rayleigh distribution and 
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pfHj) is the Rayleigh distribution which are given by 

piH.Mr) = 
4(1-K) 

H^exp 

and 
V 

•^Ff^ °2(1-KV 

p(Hl) = ~H,exp[-~H; 
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(2) 

(3) 

H is a normalized wave height by the mean wave height. 
Correlation parameter ( K) between R1 and H2 is correlated 
to the wave spectrum (Battjes and van Vledder, 1984) as, 

/ 2 i 2\ 1/2 / 
K =(p +K ) I m0 , (4) 

where 

p = =  ('" S(f) COS (231 (/-/J 
Jfd               V 

Tm)df, 

x = --(/uS(f)sm(2n(f-l) 
Jfd               v 

Tm)df, 

L = milma  , 

Tm = 1 If., 

mn =     f"S(f)df, 
Jfd 

k 
fu 

= ( -0.186/ r+ 0.735) fp 

= (1.61 lr+ 1.62) fp 

:(4sr< 
:(4sr< 

20) 
20) (4)' 

in which S(f) is a power spectrum, fp is its peak frequency, 
r is a shape factor of the spectrum. 

S(f) = (///,rexp {i-W4} (5) 

Narrow integration range from fd to fu instead of 0 and 
co respectively, in the calculations for p, A, and n^ is used to 
improve the value of correlation parameter (Kimura and Ohta, 
1992a). 

The probability of the second jump from n. to Hj+1 (E- > 
2Hj+1) is also given by 
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p21(Hj)dH'- 

(Hj I 2 rH, + dH 

Jo      dH2J p(HxJtJd dHx 

l-Hj + dH 

JH, 

(6) 
)dH1 

in which P(HlfH2) and p(HJ are given by eqs.(2), (3) 
respectively. Combining eqs.(1) and (6), the condition 2A 
and 2B is given as 

pfi(H)dH = ptt(H)dHp21(H). 

5. Formulation of the condition 3 

(V) 

Two waves in Fig.2 have the same zero-down-cross wave 
height and period but different crest heights. To clarify 
the difference between these two waves, Kimura and Ohta 
(1992b) introduced the new parameter : the mean point 
between wave crest and trough (Fig.2). Applying this parameter, 
the condition 3 is formulated as, 

dIH, >0.15 , (8) 

in which d is a distance from the mean water level to the 
mean point between wave crest and trough, H, is a wave 
height. 

/   H* 

^\        i 

H* 
2 

X7 

4  1*   •• 

d 
• f  N.                                    i . 

• v y \    ri* 
/ -d 

T 

r y 

. 
1* 

H* 
2 

Fig.2 Zero-crossing waves with the same wave height and 
period but different crest heights. 

Probability of eq.(8) is theoretically given as 
follows. Putting E = d/H,, combined distribution of e and H 
is given as (Kimura and Ohta, 1992b), 

p(e,H): -exp 
2s \ 3t//(l-4e0 

2(1-Kh" 

JtK2/f(l-4e
2) 

(9) 
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in which H is the normalized wave height with its mean 
(H=H4/Hm). The condition 3 (eq.8) is also expressed as 

Jo.15 
(10) 

in which p(e| H) is determined as 

p(z\H)=p(e,H)lp(H)  , 
where 

p\H)=\    piA^dA,  , 
Jo 

(11) 

(12) 

and 

P&tM = —rz—r—exP 2(1-K.) 

tt{A1 + (2g-A,)
zj I UKM2H-A^ 

4(1-K^)    P   2(1- KJ)  , 

(13) 

In eqs.(9) and (13), K2 is the correlation parameter. This 
value is calculated using the values 0, °o and Tm/2 instead 
of fd, fu and Tmrespectively in eqs.(4), (4)'. 

Solid line in Fig.3 shows the calculated p£2 (for a 
fully saturated sea condition, for example, r=5). 

10° 

102- 

10"- 
non-linear 

106- 

108- 
linear 

10-io_ 

in-12 iu I i I i i l i         i         i 

4 6 8 10 12 14 16       18      20 
r 

Fig.3 p£2 with non-linearity (dotted line) without 
non-linearity (solid line) 

If we take the non-linearity of wave profile into 
account, p£2 increases considerably as follows. 

In a deep sea condition, the 3rd order wave profile is 
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given as, 

i^-a cos f 2JI91 + ——cos (4nflJ + —cos (6JI6 1 , (14 ) 

in which 6 is a phase, L is a wave length and the relation 
between wave height H, and a is given by 

H. = 2a + 3~a3  . (15) 
L2 

Wave  steepness of  a  significant wave  for  fully 
saturated wind waves is about 0.04 - 0.05 (Goda, 1975). 
Since H£ > 2H1/3 (Hf : freak wave height), wave steepness of 
the freak wave may be larger than 0.1, and d/H, may be 
approximately, 

naz/LH,-nl4-HIL  . (16) 

Putting H/L in eq.(16) equals to 0.1, we obtain e to be 
about 0.08. Therefor taking the non-linearity into account, 
the condition 3 may be able to change as, 

Jo.i 
p(E\H)de   . (17) 

6. Formulation of the condition 1 

Assuming the conditions 2A and 2B and the condition 3 
to be independent, the condition 1 together with 2A, 2B and 
3 is formulated as, 

Pf=f°     Pjl(H)Pn(H)dH (18) 

7. Result of the calculation 

Result of the calculations are listed in Table-1. If we 
apply eq.(10) for the condition 3, p£ is about 0.155x10"" 
when r=5 in eq.(5). Narrower spectrum brings far smaller 
value for pf. The effect of non-linearity on the condition 3 
is compared in Fig.3. Broken line show p£ from eqs.(17) 
instead of eq.(10). p£ with non-linearity gives a far larger 
value. 8 does not distribute widely when wave height is very 
large (Kimura and Ohta, 1992b) and large waves have non- 
linearity on their profiles, the condition 3 may not be 
important. 

Furthermore, the second jump (H. > Hj+1) in the 
condition 2 may not be an important also. To realize only a 
hazardous property of the freak wave, consecutive wave 
height after the freak wave may not be important. 
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Table-1 Appearance probability of the freak waves 

Conditions uni-directional directional 
considered 

1 0.321 x 10" 3 0.477 x 10" 3 

(1/3,100) (1/2,100) 

1, 2A, 2B, 3 0.155xl0"4 

(1/65,000) 
" 

1, 2A, 2B 0.106 x 10" 3 

(1/9,400) 

- 

1, 2A 0.198 x 10" 3 0.278 x 10" 3 

(1/5,000) (1/3,600) 

The calculated result is listed in Table-1 when the 
conditions 2B and 3 are neglected. 

8. 3-dimensional sea condition 

If we use a single wave gauge in the measurements, the 
wave gauge can not always record the local maximum in a 
directional sea condition as shown in Fig.4. If wave gauges 
can selectively record wave profiles at the local maxima of 
short crested waves, we may have larger appearance probability 
of large waves, in this section, the change in the appearance 
probability of the freak wave is introduced when the maximum 

Wave gauge 

Direction of 
wave propagation 

-\- 

Fig.4 Short crested wave and wave gauge 
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wave height within a certain distance from a fixed point is 
applied. 

We place a plane Q which is vertical to the horizontal 
still water plane (x1- y') and is perpendicular to the 
dominant wave direction, x' is taken in the dominant 
direction of waves and y' is taken on Q. Figure 5 shows 
schematically a wave envelope for the cross section of short 
crested wave profile on Q at a certain instance. A wave 
gauge is placed at point A and this point is taken as an 
origin (x'=0,y'=0). Using the Taylor series expansion, the 
envelope R(y') is expanded around A as, 

R(y ') = RA + RA(y ') + RA (y T' 2 + • • (19) 

RA' and RA" are the first and second derivatives of R at 
point A. Since we only discuss the wave height in the 
vicinity around A, we apply three terms in eq.(19) : R is 
approximated with a quadratic function around A. The value 
of R at the local maximum (RB) is given as 

Rn={2RARA-RA I2RA (20) 

Ay 
< • J 

<s*~*r~l AR 

•\t 
RB RA     \ 

\R 
\ r           ] r       V                 * * y' 
B   A  ~ 

Fig.5 Wave envelope on Q 

A distance from A to B is given as 

&y = \RJRAl (21) 

The probability that the value RB-RA exist within AR 

AR+dR is given by 

: ( P(R',R"; RA) dR' dR" (22) 
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in which P(RA', RA"; RA) is the conditional probability 
distribution of RA' and RA" for the given value of RA. S is 
the region of integration. Figure 6 shows the region S 
schematically. Solid lines shows the relations, 

AR = -RA/2RA 

and 

(23) 

AR=-R. l2R.+dR A A 
(24) 

respectively where AR=RB-RA. Dotted line shows the relation, 

Ay = \RA'/RA" I = const. (25) 

eq.(24) 

Fig.6 Region of integration S 

If the shadowed part is taken as a region S, eq.(22) 

gives a probability of RB-RA= AR - AR+dR within a distance 

Ay on Q from A. 
P(RA', RA"; RA) is introduced as follows. The combined 

distribution of RA, RA', RA" 
theoretically by Rice(1945) as 

?(V/ RA), is derived 

P(R ', R\ R") = 2a ( 
Jo 

exp L'  4 Y<t> "# • (26) 



in which 

a = 
R2 

(2Jt) ̂ ' 

P = --BJR2 I2B2, 
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exp { - -^(BJi2 - 2B2RR" + B2ZR 
2 + Bfi" 21, (27) 

IB I 

where 

Y = (B22R
2 - 2BARR + 2B1R

1) I (2B1), 

B = b<p2b4 + 2blb2b3-b\-b<p2
3-bAb\ (28) 

B0=(b2b4-bl)B, Ba=(bJ>4-b$B, J3) u, is22—\is0v4      u2j 

Bx = -ibfo-bjbj B,       B2 = (blb3 -bl)B, 

B3 = -{b,b3 -bjbj B,       B4 = (b0bz -b$B. 

bL  (i=0,l,2,3,4)   is given as  follows, 

i2x       ,,2 
bo = (O =(0 . *i = VJsz) =(Ui) , (29) 

.2.        ,,1 
*i = (Q =(Q' b3 = (ijc3) =(ijs3), 

= (£)=(&, 

where 

/fl = ^  C„cos (ux -umx + 6„ 
n = I 

and 

(30) 

/C2 = (W .    k = tf,i).   ** = (W ,    ',3 = fti) • (31) 
()'   and   ()"   are  the   first  and  the   second  derivatives,   Cn is 
calculated by the relation   (Longuet-Higgins,1957), 

u + du, v + dv Q1 

2       -r- = E («,v) du dv , (32) 

where E(u, v) is the directional wave spectrum in which u 
and v are the wave number of component wave in x' and y' 
directions respectively. 2 means to take the total of Cn

2/2 
in the region u - u+du and v - v+dv. The conditional 
distribution P(RA', Rs"; RA) is given as, 

P{R\R»;RA) = P{R\R\R) I p{R)\ , (33) 



FREAK WAVE APPEARANCE 367 

in which p(R) is the Rayleigh distribution. 
Rice (1945) gave a theoretical expression for eq.(26), 

the integration was made numerically, for the simplicity. 
In the calculation of E(u, v), Bretschneider-Mitsuyasu 

spectrum with the significant wave of H1/3 =5.5m, T1/3 =10s is 
used. For the directional function, Mitsuyasu type directional 
function (Goda,1985) with Smax =10 is used. When the sea is 
in a fully saturated condition, above value for Smax is 
recommended (Goda,1985). The power spectrum and the directional 
function is multiplied and transformed into E(u, v), applying 
the dispersion relation of component waves. Above power 
spectrum brings same statistical properties of freak waves 
when r=5 in eq.5 and directionarity is ignored. 

Figure 7 shows the probability that RB exceed 2 times 
of R1/3 (1/3 highest amplitude) in terms of RA/(2R1/3). 
Considerable probability exists in the region RA/(2R1/3) > 
0.85. 

If we take the waves of RA < 2R1/3 but RB > 2R1/3 into 
account as freak waves, appearance probability of the freak 
wave can be calculated as follows. 

When only the condition 1 is used for the freak wave 
definition, 

P=r' pFP(H)dR, 
Jo 

(34) 

in which 

1.0-| 

0.8 

0.6- 

0.4- 

0.2- 

0.5 0.6 
~i r~ 
0.7 0.8 

R/2R1/3 

0.9 1.0 

Fig.7 Appearance probability of the freak wave 
within the vicinity 0.1 L1/3 . 
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I pF :0<R <2RV3 

Pt 
1     : R>2Rl!3   , (35) 

pF is given by eq.(22). 
If the conditions 2B and the 3 are neglected, the 

appearance probability is given by, 

P=jo pFpn(H)dH (36) 

Equation (35) is also applied in eq.(36) for pF. 
The results from eqs.(34) and (36) are also listed in 

Table-1. If we take the directional property of waves into 
account, the appearance probability increases about 45% when 
the sea condition is fully saturated and the condition 1 and 
2A are applied in the freak wave definition. 

9. Conclusion 

If only the conditions 1 and 2A given by Klinting and 
Sand are applied, the appearance probability of the freak 
wave is about 2.78xl0~4. This means a freak wave appears 
once every 3,600 waves on the average. Considering the 
extremely disastrous properties of this wave, this is 
slightly too frequent. We may have to use a higher wave 
height for the freak wave. We also have to continue looking 
for the possibility that freak wave may not follow the 
ordinary statistical law but comes from other physical 
mechanism. 
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