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for Directional Wave Spectrum Estimation 
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Abstract 

This paper presents an extension of the maximum entropy principle method 
(MEP), named the extended MEP (EMEP), as a general and practical method for 
estimating directional wave spectra. Since the EMEP is formulated to consider errors 
in the cross-power spectra, it proves to be an accurate, reliable, and robust method 
against such errors. In addition, we also examine the EMEP using numerical 
simulation and field wave data, with its validity being subsequently discussed. 

1. Introduction 

The directional spectrum of ocean waves expresses their fundamental properties 
by describing the energy distribution as a function of wave frequency and wave 
propagation direction. Many methods have been proposed for estimating the 
directional spectra of various types of ocean wave measurements, e.g., the direct 
Fourier transformation method (DFTM), parametric method, maximum likelihood 
method (MLM), extended maximum likelihood method (EMLM), maximum entropy 
principle method (MEP), and Bayesian directional spectrum estimation method 
(BDM). 

The MEP (Hashimoto and Kobune, 1985) can estimate the directional spectra 
using three simultaneously measured quantities related to random wave motion, for 
instance, pitch, roll, and heave data, and when applied as such, estimates of directional 
spectra have better directional resolution than other existing methods. On the other 
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hand, the MEP is not a general method because it is restricted to applications 
involving three-quantity measurements. 

In comparison, the BDM (Hashimoto, 1987) can handle more than three 
arbitrary-mixed instrument array measurements and has the highest resolution among 
existing methods for estimating the directional spectrum under such conditions. This 
method is a robust method for estimating the directional spectrum using cross-power 
spectra contaminated by estimation errors, though it is also a general method and 
requires the use of time-consuming iterative calculations. 

Consequently, a method needed to be developed that can be applied to arbitrary 
general measurements, while at the same time easily yielding an accurate and reliable 
estimate of the directional spectrum. 

The present paper discusses inherent drawbacks of several existing methods for 
estimating the directional spectrum, and then describes a new method, the Extended 
MEP (EMEP), which correspondingly functions as a general yet practical method. 
Since the EMEP is formulated in the same manner as the BDM, i.e., considering 
errors in the cross-power spectra, it demonstrates both robustness and reliability. 
Here we also examine the EMEP using numerical simulation and field wave data, with 
its validity being subsequently discussed. 

2. Fundamental Equation Related to Directional Spectrum 

The general relationship between the cross-power spectrum for a pair of wave 
properties and the wave-number frequency spectrum was introduced by Isobe et al. 
(1984) as follows: 

$„(«) = jkHm(k,m)H:(k,(a)exp{-ik(x„ - xJ}S(k,w)dk, (1) 

where o is the angular frequency, k the wave number vector, Oran(w) the cross- 
power spectrum between the m-th and «-th wave properties, Hm(k,a) the transfer 
function from the water surface elevation to the m-th wave property, ;' the imaginary 
unit, xm the location vector of the wave probe for the w-th wave property, S(k,m) 

the wave-number frequency spectrum, and " * " denotes the conjugate complex. The 
wave number k is related to the frequency / by the following dispersion relationship: 

to2 = (2it/)2 = gk tanh kd, (2) 

hence, the wave-number frequency spectrum can be expressed as a function of the 
frequency / and wave propagation direction 6. Equation (1) can therefore be 
rewritten as 

J'2ic 4 

o  //m(/,e)//„(/,e)[cosWxm„cose+^„sin9)} 

-sm{k(xmn cos9 + ymn sin 6 )}]£(/, 6)^6, 
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where xmn =xn-xm, ymn = yn -ym, and S(f,Q) is the directional spectrum. 
The directional spectrum is commonly expressed as a product of the frequency 

spectrum S(f) and the directional spreading function G(0|/), i.e., 

S(f,Q) = S(f)G(Q\f), (4) 

with S(f,Q) taking a non-negative value and satisfying the following relationship: 

fo*S(f,Q)dQ=S(f). (5) 

Substitution of Eq. (4) into (5) yields 

J^G(8|/)dB-l. (6) 

The transfer function Hm(f,Q) in Eq. (3) is generally expressed as 

^(/,e) = //m(/)cosa»esin^e, (7) 

where the function hm{f) and parameters am and |3m obtained from small amplitude 
wave theory are specified for each measured quantity in Isobe et al. (1984). 

Equations (1) and (3) are the fundamental equations for estimating the directional 
spectrum on the basis of simultaneous measurements of various wave properties. If 
the function S(k,w) or S(f,Q) is determined which respectively satisfies Eq. (1) or 
(3), and it has a non-negative value, then this function is termed as the directional 
spectrum. 

3. Existing Methods for Estimating the Directional Spectrum 

If an infinite number of wave properties are measured, i.e., the cross-power 
spectra are known for infinite pairs of m and n in Eq. (1) or (3), the directional 
spectrum can be uniquely determined. However, only a limited number of wave 
properties can actually be measured at a limited number of locations; thus, the 
directional spectrum cannot be uniquely determined since the number of component 
waves is infinite. Existing methods for directional spectral estimation therefore 
attempt to determine the unique function by introducing some type of idea and/or 
trick, and as a result, their advantages and disadvantages depend on the employed 
concept. The most prominent methods and their advantages/disadvantages are briefly 
discussed as follows. 
(1) Direct Fourier Transformation Method (DFTM) 

This method was first proposed by Barber (1961) and uses the following 
estimation equation: 
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5(/,e)-a|2*-,(/)«p{*(*.-*-)}• (g) 

where a is a proportionality constant such that the estimate of the directional 
spectrum satisfies Eq. (5). Although the method's computation is easy, the 
directional resolution is low and a negative energy distribution sometimes occurs. 

(2) Parametric Method 
Parametric methods employed by Longuet-Higgins et al. (1963), Panicker and 

Borgman (1974), and Hasselman et al. (1980) assume a specific formulation for the 
directional spectrum, such the following truncated Fourier series or a cosine-powered 
function: 

S(J,B) = «„(/) + 2R(/)cose + A„(/)sin6} (9) 
n.l 

S(/,6) = ^(/)Ia„(/)cos2s»(/){9^f^}. (10) 

It should be realized that these methods are only able to approximate the real 
directional spectrum when it suitably fits the model. 

(3) Extended Maximum Likelihood Method (EMLM) 
This method was proposed by Isobe et al. (1984) who extended the maximum 

likelihood method (MLM) developed by Capon (1969) so as to handle an arbitrary 
combination of wave properties. The EMLM formula is derived using a window 
theory, namely, 

5(*,co)-a/[22*i(co)/C(*,CD)/f,(ft,(o)exp{i*(jc„-*„)}], (11) 

where •^(oo)  is the  mn  element  of inverse matrix 3> '(to),  while a   is a 
proportionality constant such that the directional spectrum S(k,m) satisfies Eq. (5). 

The EMLM has high-directional resolution and versatility, and consequently, has 
been widely employed in directional wave analysis. On the other hand, when the 
layout of the probe array is not proper or the cross-power spectra are contaminated 
by errors, this method sometimes estimates erroneous peaks or negative values, while 
also in some cases failing to yield a smooth and continuous estimation of the 
directional spectrum. 

(4) Maximum Entropy Principle Method (MEP) 
We previously developed the MEP (Hashimoto and Kobune, 1985), which 

provides a powerful means for estimating the directional spectrum when three- 
quantity point measurements are available.   Such data can be obtained, for example, 
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using a discus buoy or a two-axis current meter and a wave gauge. The estimation 
equation of the MEP's directional spreading function is expressed by maximizing the 
entropy with an assumption that the directional spreading function is a type of 
probability density function, i.e., 

G(8|/) = exp[a0(/) + J>„(/)cos«6 +*.(/)sin/fe}], (12) 

where the coefficients an and bn are the Lagrange multipliers. The advantage of this 
expression is that even though the Fourier series in the power of the exponential 
function is truncated by n = 2, it has non-negative values and yields a wide range of 
shapes for G(8J/). 

It should be noted that although the MEP was originally developed to be used 
with three-quantity point measurements, Nwogu (1989) expanded it for application to 
array measurements. Since this expansion was carried out using the same procedure 
as the original one, the directional spreading function results in a complex form 
including Bessel functions; thereby making the computation more difficult than the 
original MEP. 

(5) Bayesian directional spectrum estimation method (BDM) 
The BDM (Hashimoto, 1987) provides an accurate and reliable estimate of the 

directional spectrum for array measurements consisting of more than three arbitrary 
quantities. The assumed estimation equation of the BDM's directional spreading 
function is not a formal mathematical function, instead being a piece-wise constant 
function expressed as 

G(8|/)-2exp{xt(/)}/t(8), (13) 
*=i 

*,(/)-ln{G(9t|/)} (14) 

1   :   (yt-l)A9se<M6 

where 

"^'"   ' 0 :  otherwise (15) 

Equation (13) can be determined by minimizing Akaike's Bayesian information 
criterion (ABIC) (Akaike, 1980) and applying an additional condition that the 
directional spreading function be smooth and continuous, namely, 

{xk-2xk_x+xk_2}
2 — small 

(k = \,--,K and x0=xK, x_, =%_,). 

The advantage of Eq. (13) is that even though the additional condition of Eq. (16) is 
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imposed, it generates non-negative values and yields a wide range of arbitrary shapes 
for G(0|/). However, since it consists of many unknown parameters 
xk(f) ; (^ = V",^0, the BDM involves the use of time-consuming iterative 
calculations. 

After reviewing the various methods, it is clear that the each formulates a tailored 
model for approximating the directional spectrum, being characterized by some 
unknown parameters. Though the principle and method of deriving each model are 
different, inherent advantages and disadvantages arise due to the model's different 
characteristics. When considering the MEP and BDM, since they are characterized by 
an exponential function incorporating a power function, an advantage exists in that 
these models result in non-negative values and flexibly yield a wide range of arbitrary 
shapes of the directional spectrum. 

4. Formulation of Extended Maximum Entropy Principle Method (EMEP) 

To simplify the nomenclature in the equations, Eq. (3) is rewritten using the 
upper triangular components of the hermitian matrix <!>(/), such that 

•<(/)- £K//1(/,e)G(e|/)rfe      v-\,-,K), (l?) 

where K is the number of equations, and 

W.8) = HJffiWKf,Q)[cos{k(xm„ cos9 +ym„ she)} 

-sm{k(xm„ cos6 +ym„ sine)}]/ Wmn(f) 
(18) 

<!>,(/) =<*>m„(/)/{S(/)^„(/)} (19) 

G(B\f) = S(f,Q)/S(f), (20) 

with Wmn(f) being a weighting function introduced for normalizing and non- 
dimensionalizing the errors of the cross-power spectra. This function is represented 
by the following equation (standard deviations of error of co-spectrum and 
quadrature-spectrum, Bendat and Pirsol, 1986) for the real and imaginary part of Eq. 
(17), respectively: 

a[Cm„(/)] = [{1>ram(/)0„„(/) + Cm„(/)2 -Qm„(ff}'2Njn (21) 

o[Qm„(f)] ~ l{<S>mm{fys>J.f) - Cm„{ff + QMf)l 2AU1'2, (22) 

where <&„,„(/) = Cm(f) - iQm„(f) and Na is the number of the ensembled average. 
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The directional spreading function normally takes values greater than or equal to 
zero. However, in the EMEP, the function is treated as a function which always takes 
positive values. Then, as a general expression for G(0|/), we can extend Eq. (12) (or 
simplify Eq. (13)) to obtain 

N 

exp[^{a„(/)cos«6 +6„(/)sin»9}] 
G(6|/) = - "-0  (23) 

f exp[V {a„(/)cosne + Z»„(/)sin »6}]Je 

where «„(/), &„(/) ; (« = 1,"-,A0 are unknown parameters. 
For the sake of convenience, the complex values <(>,(/)  and  77,(/>9)   are 

rewritten as 

Hi(Q) = Re{Ht(f,Q)}   ^+1(6) = Im{//,(/,e)} J 

so that <)>,(/) and //,(/,6) are real. For simplicity, the frequency / is omitted on the 
LHS of Eq. (24), and is also omitted hereafter. 

When Eq. (17) is applied to the observed data, the errors contained in the cross- 
power spectra must be taken into account. Thus, after making the substitution of Eq. 
(23) into (17), it can be modified by considering the existence of errors e,., i.e., 

£* {<));- Hj(Q)}exp{J,(a„ cosnQ + bn sin nQ)}dQ 

JTexP(2K cos"e + K sin«e)}J9 (25) 

(i = l,---,M) 

where M is the number of independent equations left after eliminating the 
meaningless equations such as the zero co-spectrum and zero quadrature-spectrum. 

Now, if e, ; (/ = l,---,M) are assumed to be independent of each other, and the 
probability of their occurrence is expressed by the normal distribution having a zero 
mean and variance a2, the optimal G(6|/) is one which minimizes JE ]• However, 
Eq. (25) is nonlinear with respect to an, bn ; (n = l,--,N), and is therefore difficult 
to solve. Consequently, let us apply Newton's technique of local linearization and 
iteration to solve the problem. 

If approximate solutions an, bn ; (n = \,---,N) are known, the solution an, bn ; 
(n = \,---,N) can be written as 
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(26) 

where a\, b'n are the residuals between the solution an, bn and the approximate 
solution an, bn. 

Substitution of Eq. (26) into (25) and rearranging yields the following linearized 
equation with respect to a'„,b'n: 

Ef = ZN,i • Va'„X„,,+Z»'„7„,,)     (z = l,-,M), (27) 

where 

[%-Hi(Q)}FN(Q)dQ 

X    =7   >^- 

1^(6)^9 

J FN(Q)cosnQdQ    j {<(>, -Hi(Q)}FN(B)cosnBd8 

Y   = 7   J * 

Jo5v(eye j"^ - //,(9)}^(e)^ 

Fw(e)sinw6fi?e     I {<|)(-Jffj(
e)}j'v(e)sin«erfe 

0 Jo 

joFN(Q)dQ J[^-^(e)}Fw(e)dB 

(28) 

(29) 

(30) 

<2ft 7^(e) = exp{y(a„cos«e + £„sin«9)}. (31) 

Equation (27) can be solved iteratively by assuming a proper approximate solution an, 
bn;(n~\,-,N). 

Minimizing ]? e f for a particular data set also introduces an additional problem of 
choosing the optimal finite order N for the model (Eq. (23)); hence to overcome this, 
the minimum Akaike's Information Criterion (AIC) procedure (Akaike, 1973) is 
incorporated into the above iterative calculations to yield a reasonable and smooth 
estimate of G(0|/). The AIC is given by 

AIC = M(ln 23i +1) + M In d2 + 2(27V +1), (32) 

where M is the number of independent equations (Eq. (27)) and a2 is the estimate of 
the variance of E , : (/' = !,•••, M). 
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5. Numerical computation of the EMEP 

To estimate the directional spectrum using the EMEP, the computation must be 
performed from lower (N = 1) to higher orders. During the iterative computation, 
however, the computation occasionally becomes unstable in special cases. If so, a 
control parameter 8 is introduced into Eq. (26) to under-relax the iterative 
computation: 

a„=a„+& an 
(33) 

that is, when the iterative computation is unstable, the control parameter 8     is 
changed to a smaller value, followed by 8 = (0.5)* : (k = 0, • • -,4). 

The numerical computation procedure including the minimization of the AIC is 
summarized as follows: 
1) Select the lowest model order N = 1 and compute Xnl, Ynj, and ZNj of Eq. (28) 

~ (30) assuming the initial approximate solutions of a, and bx being equal to 
zero. Then, to obtain solutions a, and Z>,, carry out the iterative computation of 
Eq. (27) and perform the least square method for ^ e f until the absolute values 
of residuals |a',| and \b\\ become small enough (\a\\ , \b\\ < 0.01). 

2) Compute the AIC by Eq. (32). 
3) Substitute a, and Z>, obtained in step 1) into Eq. (31) vice a, and Z>1; leaving a2 

and b2 equal to zero, and carry out the same procedure as step 1) to obtain the 
solutions at, bt : (/' = 1,2) of the 2nd order model (N = 2). If during the iterative 
computation one of the absolute values of residuals \a\\, \b\\ : (z' = l,2) has a 
value greater than 30, terminate the computation and adopt N = 1 as the optimal 
model order, with the values a, and Z>, obtained in step 1) being chosen as the 
solutions. If the iterative computation does not converge after 100 iterations, 
terminate the computation and similarly choose the solutions obtained in step 1). 
If \a\\, \b\\ : (i = 1,2) become less than 0.01, compute the AIC using Eq. (32) and 
proceed to the next step. 

4) If the AIC obtained in step 3) is greater than that of step 2), or if the absolute 
value of the difference between the two AICs is much less than 1, adopt N = 1 as 
the optimal model order and choose the values a, and b, of step 1) as the 
solutions. If the above cases do not hold, proceed to the next step. 

5) Change the model order into a higher one (3rd, 4th, ) and repeat in the same 
manner as steps 3) and 4). 

6) During the computation of step 5), if the AIC of the model order N+l is greater 
than that of the previous order N, or when the absolute value of the difference 
between the AIC of the model order N +1 and that of the previous order N is 
much less than 1, or when the iterative computation does not converge at the 
model order N+l, then terminate the computation and choose the model order 
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N and at, bt : (i = l,---,N) as the optimal solutions. 
7)     Substitute the optimal solutions at, bi : (i = \,--;N) into Eq. (23) to get the 

optimal directional spreading function G(8j/). 

In addition, since the number of unknown parameters should be less than or equal 
to the number of independent equations, i.e., 2N ^ M, steps 1) ~ 6) should be 
performed at most within this order. 

6. Examination of EMEP by Numerical Simulation 

Here we will employ numerical simulation to examine the validity of using the 
EMEP to estimate the directional spectrum. The procedure is the same as that used 
for examining the EMLM (Isobe et al., 1984), where the employed directional 
spreading function is a cosine-powered type function expressed as 

G(6)=2a,.cos-<(^). (34) 

When 7=1 only, Eq. (34) yields a unimodal directional spreading function, while a 
bimodal function is formulated by the superposition of two unimodal directional 
spreading functions, i.e., / = 1 and 2, having a different coefficient a,, mean direction 
0j, and spreading parameter St. The cross-power spectra utilized for the numerical 
simulation are obtained by numerically integrating Eq. (3). 

Figure 1 compares the given directional spreading function (TRUE) and the 
estimated ones by the EMEP, MEP, BDM, and EMLM, where the three measured 
quantities (sea surface elevation and two orthogonal slopes on the surface at the same 
location) are assumed to be the simulated observation condition. The ordinate is 
normalized by dividing the value of the directional spreading function by the 
maximum value of the TRUE directional spreading function. As indicated, the EMEP 
yields the same estimate as the MEP and can detect the small peak in proper direction 
in Fig. 1(e) and (f), though it overestimates the main peak and underestimates the 

(a) MEP — -E MEP 

CQ> " BDM"'' /t\ -TRUE - 

• 

'    EMLM 

• 

' (b) MEP - -EMEP 

c:<:e> " BDM'' ^•TRUE 

o. s - 
' EMLM 

V 

(c) MEP — ~^vV EMEP 
<e> BDM-^ 

/ \\    TRUE 
o. 5 

" 
/  'I 
/  EMLM 

(e) MEP - 
TRUE 

270 300 
o (degree) 

Fig. 1 Comparison of EMEP, MEP, BDM and EMLM (Three-quantity measurement) 
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Fig. 2 Comparison of EMEP, MEP, BDM and EMLM (Star array measurement) 

small peak. Also note that the EMEP (MEP) shows the minimum leakage of the 
wave energy into neighboring directional bands. On the other hand, the EMLM 
appears to recognize the existence of the small peak in Fig. 1(e), but its estimated 
direction is not proper, while the BDM does not even recognize the small peak. 

Figure 2 shows results when a star array consisting of four wave gauges is 
assumed as the simulated observation condition. The minimum distance D between 
the wave gauges is assumed as D/L =0.2, where L is the wave length. In 
comparison with Fig. 1, the directional resolution of the EMEP, BDM, and EMLM is 
improved in Fig. 2(d), (e), and (f). In particular, the EMEP is very close to the BDM 
and shows good agreement with TRUE. In contrast, the EMLM underestimates the 
small peak and shows some energy leakage around the peaks, especially in Fig. 2(e) 
and (f). 

7. Field Data Analysis 

Here we apply the EMEP to analyze wave records acquired at an offshore oil rig 
(Iwaki-oki Station) located 42 km off the Iwaki coast, the northeastern coast of the 
main island of Japan (Fig. 3), where the water depth is 155 m. Figure 4 shows the oil 
rig, which has installed on its legs, four step-resistance wave gauges, a two-axis 
ultrasonic current meter, and a pressure sensor (Fig. 5). The simultaneous 
measurement of seven elements is performed over 20 min every 2 h. The Onahama 
Port Construction Office, Second Port Construction Bureau, Ministry of Transport, 
has been conducting this multi-element measurement of directional waves since 1986. 

Figure 6 shows typical directional spectra of a swell having a significant wave 
height Hm =3.81 m, period Tm =12.3 s, and directional spreading parameter Smm = 
75, which are estimated by the EMEP, BDM, and EMLM. Note that the shape of the 
EMEP estimate is very similar to that of the BDM, but different from the EMLM's. 
The major difference between them is that the EMLM is more diffuse and does not 
show a concentration around the peak. In addition, the peak of the EMLM is 
obviously much lower than that of the EMEP and BDM. 
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Fig. 3 Location of the wave observation station. 

Ultrasonic current f 
seter and pressure| 
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Fig. 4 Offshore oil rig and the location of wave instruments. 
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<§>        <$> 
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Fig. 5 Wave instrument array. 



244 COASTAL ENGINEERING 1994 

Fig. 6 Typical directional spectra of a swell 
estimated by EMEP, BDM and EMLM 
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Fig. 7 Typical directional spectra of multiple wave systems 
estimated by EMEP, BDM, and EMLM. 
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Sometimes several wave systems exist from different sources, with Fig. 7 
showing such an example measured at the Iwaki-oki Station for the EMEP, BDM, 
and EMLM. The contour lines of the relative spectral density are plotted by direction 
versus frequency domain. The upper figures show directional spectra having H]n = 
2.18 m and Tm = 9.0 s, while the middle ones are Hin = 2.02 m and Tm = 8.2 s and 
the lower ones Hy3 = 3.94 m and TV3 = 8.8 s. In the EMEP and BDM, several wave 
groups can be clearly seen coming from different directions with different peak 
frequencies, whereas some of the EMLM energy peaks are diffused and not as clear. 

8. Conclusions 

Precise determination of the directional spectral characteristics of ocean waves is 
an essential step in planning and designing of coastal and offshore structures. Since 
field measurements of directional wave spectra require deployment of multiple sensors, 
all of which must be maintained in good condition for successful data recording, the 
obtained data must be analyzed using an accurate, reliable, and robust method to 
estimate the directional wave spectrum. We believe the proposed EMEP meets these 
criteria and can be successfully employed for carrying out research on directional seas. 

Our major conclusions are as follows: 
1) The   EMEP   can   be   applied   to   handle   arbitrary-mixed   instrument   array 

measurements. 
2) When the EMEP is applied to three-quantity measurements, it yields the same 

estimate as the MEP and has higher resolution than the EMLM. 
3) When the EMEP is applied to more than three arbitrary-mixed instrument array 

measurements, it yields almost the same estimate as the BDM and has the highest 
resolution among other existing methods. 

4) A personal computer can be used to perform the EMEP; thereby obtaining real- 
time estimation of directional spectra. 
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