
CHAPTER 11 

WAVE DAMPING BY KELP VEGETATION 

'Alfonse Dubi and 2Alf T0mm 

1. INTRODUCTION 

Aquatic vegetation, like seagrasses, macroalgae and trees whether submerged 
or subaerial are an important feature of a coastal ecosystem. In addition to 
the structural and functional aspects to the environment, they are known to 
reduce wave and current energies propagating through them. The reduction 
of energy would then influence sediment motion and thus render an impact 
on coastal sediment transport. The dissipative character of large stands of 
kelp has been studied for instance by Jackson and Winant, (1983), Dalrymple 
et al. (1984) and for artificial seaweed as material for shore protection Price 
et al. (1968). 

Kelp is a macroalga which grows on hard rock and stone and extracts all of 
its nutrients from the water column. The plant consists of a root-like holdfast 
organ, a stipe and a frond (Fig.l). The general properties of a fully grown (4- 
8 years) kelp are summarized as follows: 
Length of stipe: 1-2 meters. Fronds have the same length as the stipe. 
Specific gravity: 1.18 kg/cu. m; Biomass: 10-30 kg/sq. m 
Growth density: 10-15 per sq. meter of horizontal area 
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Specimen found at water depths 2-20 metes. 

FROND   {lamina) 

STIPS 
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Figure 1: Kelp Laminaria hyperborea 

Kelp is harvested at several places along the Norwegian coast and is used as 
a raw material for the manufacturing of various chemicals. In some areas the 
harvesting of the seaweed has become a controversial issue in which there 
is suspicion among coastal zone managers that the harvesting results in beach 
erosion. This study is actually a consequence of the controversy. 

Basing on the most recent work by Asano et al. (1992), a new analysis is 
developed for the flow model and the vegetation motion using field and 
experimental results carried out on kelp fronds and kelp plant models. The 
theoretical model is compared with experimental results. The influence of 
kelp vegetation on beach erosion is not included in this paper because of 
space limitation. 

2. BASIC FORMULATION FOR THE FLOW MODEL 

Let us consider small amplitude waves propagating in the x- direction in 
water of depth h above submerged vegetation of mean height d. We employ 
cartesian coordinates (x,z) fixed on the mean free surface, z=0, where z is 
positive upwards (see Fig.2). The surface displacement at the free surface is 
given by % =a0e

i(kx*<ot) and displacement at the interface is r\2 =b0e'(loMDl). Let 
us assume flat bottom, potential flow in the water layer, frictional flow in the 
vegetation zone. At the interface the viscous shear stresses and the corre- 
sponding layer, 8, are initially neglected. The bottom shear stress is 
considered to be negligible in comparison with the frictional resistance of the 
vegetation. Further, let us assume known a priori the wave amplitude a0, the 
angular frequency co=27c/T both of which are real and positive, k is a wave 
number and T is the wave period. 
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Figure 2: Definition sketch of the flow model 

The equations of motion employed are the linearized momentum equations 
for the water and vegetation zones. For a unit volume 

'=-±W, (1) 

at/, 1 VPv-F 
dt       p     " 

and the equation of continuity 

(2) 

Vt/=0 (3) 

where the subscripts 1 and 2 denote the water and the vegetation zones 
respectively; t = time; U = (u,w) = water particle velocity vector; p is the 
fluid density and P is the dynamic pressure. F = (Fx, Fz) = force vector acting 
on vegetation given as 

Fx = £;N [C^Al |«2-i| (u2-i) + p N \C„V\. (u2~l) 

and 

Fz-\N [CDz A]e KK + p N [Cwa w2 

(4) 

(5) 

where N is the number of vegetation per unit horizontal area, CDx and CDz 

are drag force coefficients in the x- and z- directions respectively; Ca is the 
added mass coefficient, u2 and w2 are the horizontal and vertical velocities 
of the fluid particles. £, is the horizontal displacement of the vegetation stipe 
with the dot denoting the derivative with respect to time. The subscript e 
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indicates the equivalent value taking into account of both the stipe and the 
frond. A and V are the total projected area and volume of the plants in this 
unit volume. More details on the equivalent values are given in the section 
on the solution for the vegetation motion. 

Let us assume that the particle velocities and the dynamic pressure are 
sinusoidal such that 

U = U(z) ei{ix'M) (6) 

and 

P = Plz) e'^"'^ ^ 

where i2= -1 . 

Substituting equations (4), (5), (6) and (7) into equations (1) and (2) we get 
a new set of equations. For the upper layer we have 

(8) 
Ht ~ 

-1^1 
P   dx 

9w1 

~~d7 ~ 
-1 El 

p    dz 
(9) 

and for the lower layer we have 

^  = -p (0 fz w2 (ID 
oz 

where fx and fz are the horizontal and vertical force components due to the 
presence of vegetation and expressed by 

h~f**fu (12) 

and 



146 COASTAL ENGINEERING 1994 

/«=/ft + & (13) 

in which the horizontal and vertical drag force terms are defined by 

/a* = l[CaA |1-£l(1-i) l«al/« <14) 

and 

/* = I KVL |w2| /« (15) 

The inertial force terms are expressed by 

f*-\cj\\\-±\ (16) 

Here Cmx = 1 + Cax 

4 - - VJ\ <17) 

We impose the following linearized boundary conditions at the free surface, 
interface and bottom boundaries on the momentum equations (8), (9) (10) 
and  (11) : 

HM =1^1      at    z = 0 (18) 
s    dt 

^l+g^=Q      at    z-0 (19) 
dt2        dz 

p^l=P^P2      at  z=~h (20) 
dt 

.^-^-^ dll . W2      at    z--h (21) 
dz P °fi   dz 

•_L_ ^1 = 0      at    z = -(h+d) (22) 
P <•>£     dz 
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—- = 0      at    z- ~(h+d) (23) 

dz 

where t| = a„ ei(kx"'ot) is the free surface elevation at SWL , a0 is the wave 
amplitude at the origin, g is the acceleration due to gravity, k is complex = 
k, +kj in the subscripts r and i denote real and imaginary values. Substitut- 
ing k into the surface elevation, the local wave amplitude is found to decay 
exponentially as a = a0 exp(-ki x). 

The solutions for the flow model can be shown to be 

$., = i—[cosh(ctArf) cosh(k(h+z))—— s\nh(akd) sinh(&(A+z))] exp[i(kx-a>t) 
(0 afic 

(24) 

P2 = pC cosh(ak(h+d+z)) exp[i(fa-<of)] <25) 

where 

ga0 

cosh(akd) cosh(ikft)[1 —1— tanh(afaf) tar\h(kh)] 
a fie 

(26) 

and 

a M   < 1 (27) 
N \f*\ 

is the force ratio. In the upper layer a velocity potential Oa   exists which 
satisfy Laplace equation 

where the particle velocities are expressed as 

u* = -—-,      w., = -—- W 1 etc 1 dz 
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In the vegetation zone, however, the particle velocities can be obtained by 
substituting equation (25) into equations (10) and (11) to give 

«2 = -i — cosh(ak(h+d+z)) exp[i(fcc-cof)] (30) 
afic 

w2 = --£- s\nhak(h+d+z) exp[i(kx-<x>t)] (3D 
afx 

We remark that the horizontal and vertical wave numbers in the upper layer 
are the same when the fluid is inviscid and homogeneous. In the vegetation 
zone they are different due to the different horizontal and vertical resistance 
forces. At the interface, the horizontal particle velocities are discontinuous, 
i.e Uj & ua, thus a shear stress is present which is accounted for by a 
boundary- layer type of solution. 

Finally, from the combined kinematic and dynamic free surface boundary 
conditions we derive the dispersion relationship given by 

tanhftft - — tanhaiW 
a*=8k . 5£  (32) 

1 - — tanhakd \anhkh 
afa 

For given a, co, h, d and fx the unknown complex wave number k can be 
found by solving equation (32) by iteration. This is done in the coming 
section on calculated results. 

3. SOLUTION FOR THE VEGETATION MOTION 

In order to solve the flow field described above we need the knowledge of 
the kelp motion. The basic approach is the Morison equation in which the 
forces resisting the fluid flow are the sum of the drag and inertial forces. 
Following Asano et al. (1992), the motion of the vegetation is regarded as a 
forced vibration wih one degree of freedom. Let the horizontal displacement 
of a single kelp plant be denoted by \ while the differentiation with respect 
to time t be denoted by the over dot. For a unit length of kelp, the equation 
of motion is given by 
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mQi + ct5 + *b5 = ^pCDy4|«2-||(«2-§) + PK«2 + pFC>2-ij) 03) 

where m„ = mass of kelp per unit length, q = structural damping, k0 = 
spring constant, CDx and Cax are drag and added mass coefficients respective- 
ly, A is the projected area and V is the volume per unit length of kelp. 
Neglecting the structural damping on the assumption that it is small 
compared to the frictional forces and rearranging we get 

ml + JpC^lHa-515 + U = lPCDx\u2-k\u2 + p(1+CJw2 (34) 

The general solution of equation (34) requires iterations involving volumetric 
integration of unknown variables. For our particular case of kelp we shall 
simplify the equation of motion before attempting to solve the coupled 
system. The kelp plant consists of a stipe and a frond which together make 
a total height d. The stipe can be represented as a slender vertical cylinder 
of height d-lk with uniformly distributed mass and the frond is taken as a 
concentrated mass at the top of the stipe. Here lk is the half length of the 
frond. Integrating over depth gives the equation that represents the 
integrated effect over the water column by the motion at the top of the stipe. 
Now the equation of motion (34) becomes 

».* + IPICAAK-^ + *o = {[CaAK-^k + p[c„KIA        (35) 

where we have assumed that the velocities of both the stipe and fluid can be 
treated as varying linearly from the bottom to the top of the stipe, that is 

i   h+d+z; . h+d+z inc\ ?=-^rA' M2^r^ (36) 

where X refers to the level at the top of the stipe and the subscript e stands 
for equivalent values for the stipe and frond such that 

». = i«o+ *f + p(£cjr,+cy9 (37) 

Here subscripts s and f denote the stipe and frond properties respectively. 
The mass per unit length, m0, of the stipe and its equivalent added mass is 
weighted by Vi to imply the conversion of the entire kelp motion to the top. 
This is valid also for the drag and inertial force coefficients which are given 
by 

[CDM = jC^ + CqA, (38) 
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[CmV\e = {(UCJVS + Q+CJV, (39) 

Prior to linearization of equation (35) we need to establish the relationship 
between the drag forces and the flow velocity. One complication with kelp 
is that the projected area of the frond varies in a flow field. When the 
velocity (or the relative velocity as the case may be) is zero, the kelp will 
assume an upright position and the projected area is largest. As the velocity 
increases, the plant tends to bend over and the fronds tend to streamline in 
the direction of the flow thereby reducing the projected area. A field 
experiment has been carried out by the authors in collaboration with prof. 
Martin Mork and dr. scient. student Kjersti Sj0tun of the University of Bergen 
(UiB) using a research vessel" Hans Brattstwm" belonging to UiB. Drag forces 
were measured on 7 fronds of different sizes of the Norwegian kelp by ship 
towing. In the laboratory, the forces have been measured using a shear plate 
on which 95 model kelp plants were fixed. Details of the procedure follow 
in the section on experimental set-up. Results from the two experiments as 
shown in Fig.3 show that the drag force does not follow the normal quadratic 
relationship with velocity, instead, the force is linearly proportional to the 
velocity. 

o=frond 1 

1.5 2 2.5 3 3.5 
Current velocity, (m/s) 

Figure 3: Variation of the drag force on kelp fronds with current velocity 

Basing on the two  experiments, the following general relationship is 
proposed between the projected area and the flow velocity: 

rICflA = FA»ri\~m = constant (40) 

where F^ = equivalent drag force coefficient evaluated at elevation X , or at 



WAVE DAMPING 151 

z = -(h + lk ). Substituting equation (40) into equation (35) gives 

meX + NDk + ICQX = ND uk + Nj uk (41) 

where 

ND=FK K(1-f)|1- (42) 
"x 

Both Fx and m are empirically determined constants. The experimental results 
shown in figure 3, suggest that m=l and F\=9.3 and 30.9 for currents and 
waves (fig. 7) respectively. With this information we can now proceed with 
the linearization of equation (35) to get an analytical solution. 

Assuming small amplitudes for the vegetation and fluid particle motion and 
that the particle velocity amplitude is much greater than the maximum 
velocity amplitude of vegetation, equation (35) now becomes 

».* + ipICu/LM* + *o* = SPICZ^LIBJKA+PIC^JTA (43) 

which represents a linear system provided ko is also constant. The solution 
to this equation   gives a ratio known as the velocity amplification factor 

'    " X ~ ND     ~ (44) 
co„2 

2h~•        1+Jco(^L-1)^ 
CO2 

where con = V(k0/me) in which k0 is the spring constant which was determined 
experimentally to be 20 N/m for deflections up to 55 cm at the top of the 
plant. From equation (44) we can derive the quantity 

«[(4-i)+*j 
I1-4J  =-=*=  (45) 

N ^+««(4-i)» 

The linearized damping force coefficient used in the solution for the flow 
model can be established by applying the principle of equivalent work which 
the energy dissipation of the actual system to that of a linear system (Wang 
and T0rum/1994). The time averaged work done by the actual system per 
unit surface area is given by 
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Wa=«kNFkQ-Mui (46) 
H 

where N is the number of plants per unit surface area, ak is a force 
reduction factor due to group effect and the over bar denotes the time 
averaging. For the linearized flow system 

Equating equation (46) and (47) gives 

_  akNFk(\-AjS 

J -(A+d) 

Substituting equation (30) into equation (48) gives 

akNFkQ-Ajcosh\(d-Q 
TLC

 ~ i tslnh2ifc/f («) 
P(2+   Akjd   ' 

where ks = ak. Then the linearized damping force coefficient becomes 

jet = — + tcmaa-^j (50) 
CO 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

4.1 Experimental setup 

The experiment was carried out in a 33 m long, 1 m wide and 1.6 m high 
wave tank as shown in Fig.4. Five thousand models (scale 1:10) of typical 
Norwegian kelp plants were fixed in the wave flume bottom over a span 
of 9.3 meters. This represented a density of about 12 plants per horizontal 
square meter in the field. Eight capacitance wave gauges were used to 
measure surface elevations, one shear plate to measure the horizontal force 
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and a mini current meter was inserted in the plants 4 centimeters above the 
shear plate. One of the wave gauges was fixed above the shear plate.The 
shear plate was fixed flush with the bottom. The location of the first wave 
gauge, taken to be x=0 and the last taken to be x = 7m were fixed about 1.2 
meters inward from the outer boundaries. In total, 50 tests were carried out 
for different wave periods (6-14 s, full scale) and wave heights in water 
depth of 60 cm.  Analysis of the results is done within   0 < x < 7 m. 

wave absorber 

9,3 m 16,7 m 

1 - 8 wave gauges 
legend -j       9 shear force sensor 

10 current meter 

Figure 4: Test setup 

4.2 Comparison of theoretical and experimental results 

The wave heights measured at the eight locations along the wave channel are 
fitted to an exponential decay curve H/Ho = exp(-0.00327X) as shown in Fig. 
(5) whereby H is the local wave height and Ho is the incident wave height 
measured at x=0, ki =0.00327/m was found by regression based on the least 
squares in the MATLAB environment. 

Basing on the relationship proposed in equations (40) and (42), the force can 
then be generalized as 

F = F,  11-.A J «, (51) 

where 11-Am | is given by equation (45). Fig. 6 shows this function fitted to 
the measured force for given wave heights. Fig. 7 and Fig. 8 show the linear 
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variation of the measured force with the horizontal particle velocity and 
wave height respectively. 

Finally, inserting equation (50) into the dispersion relationship given by 
equation (32) for a given water depth ,(h+d) wave period, T, and number of 
vegetation per unit surface area, the damping coefficient, ki, is found by 
iteration in the MATLAB environment . This solution, however, does not 
include the contribution of the shear stress to damping. 

20 40 60 SO 100        120        140        160        180        2C0 
Distance from first wave gauge. x*0. m 

Figure 5. Exponential decay model fitted to data 

10 12 14 
Wave Period, (seconds) 

Figure 6. Theoretical force model (Eq. (51)) fitted to measured force 
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Data fitted with: y-AX, A-3 
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Figure 7: Variation of force with horizontal particle velocity amplitude 

Wave height, (m) 

Figure 8: Variation of force with wave height 
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Figure 9: Comparison of scatter for regular and irregular waves 
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5. CONCLUSION 

The present study has given an analytical solution for water waves 
propagating over submerged vegetation taking account of the vegetation 
motion using the field experimental results. The linear relationship of the 
damping force with velocity has been applied effectively to obtain an 
analytical solution for the otherwise iterative equation of the vegetation 
motion. The average damping coefficient has been found to be ki=0.00327/m 
for the type of kelp we considered. However there has been a large scatter 
of about 30% which may have been due to reflection of the waves from the 
wave absorber (Fig. 4). A trial run with irregular waves has revealed a 
smaller scatter (Fig.9). In this study only regular waves were used. It is our 
intention to use irregular waves to investigate further on the damping force 
and the damping coefficient. 
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