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Waves in an Annular Entrance Channel 

Robert A. Dalrymple, F. ASCE and James T. Kirby, M. ASCE1 

Abstract 

Waves propagating in a curved channel are examined analytically and 
with a variety of parabolic and spectral models. The results show that 
the wide angle parabolic method is reasonably robust, but not exact, 
while a spectral method based on trigonometric functions is superior to a 
Chebyshev polynomial method. Angular spectrum models are discussed 
and shown to be equivalent to an eigenfunction expansion in the cross- 
channel direction. 

Introduction 
Waves propagating in curved narrow (with respect to the wa.ve length) chan- 

nels behave as if the channel were straight. However, when the curved channel 
is wide, then wave reflection from the outer wall and the diffraction of waves 
around the channel bend at the inner wall lead to a complicated sea state within 
the channel. 

The prediction of the transmission of waves into harbors with, curved entrance 
channels and the use of annular wave tanks (in small laboratories) depend on our 
ability to model waves in curved domains. Here waves propagating in a curved 
channel, taken to be a section of a circular annulus, are studied. An analytical 
and three different types of numerical solutions are obtained and compared. 
The analytical solution is used to verify the validity of the numerical techniques 
developed in a conformally mapped domain, resulting from mapping the curved 
channel into a straight channel. 

An annular channel can be classified as narrow or wide with respect to the 
incident wave depending on the dimensionless width, defined by Dalrymple, 
Kirby, and Martin (1995) as &(r2 — ri) = kw, where r2 is the outer radius of 
the channel, r% is the inner radius, w is the width of the channel, and k is the 
wavenumber of the progressive wave train found from the dispersion equation, 

a2 = gk tanh kh 
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where the angular frequency of the wave is a = 2TT/T, the wavenumber k = 
2ir/L, h is the water depth, and g the acceleration of gravity. The parameter 
kvo is 2n times the number of waves that fit across the channel width; wide 
channels can fit numerous waves across their widths. 

In acoustics, the problem of sound propagation in curved ducts has been 
studied by Rostafinski in a variety of papers (see References). The mathemati- 
cal problem is analogous, although now the computing tools make the problem 
much simpler. 

Analytical Solution 
For linear wave theory, with irrotational motion and an incompressible fluid, 

the governing equation for the velocity potential of the wave motion is the 
Laplace equation. The Laplace equation is written conveniently for this problem 
in polar form; therefore, we will take the velocities to be given by 

* = -* « 

(2) 
r at 

(3) 

and the Laplace equation is: 

<92$      15$       1 <92$      d2$      „ 
 1 h 1 = 0 (4) 
dr2      r dr      r2 d02       dz2 

Figure 1 shows a layout of an annular channel with a maximum 6 value of IT, 

corresponding to the positive y axis. 

Taking the depth h as constant, we assume $(r, 0, z) = <j>(r, 0) cosh k(h -f z), 
where the wavenumber k is fixed from the dispersion relationship. Substituting 
into (4), gives the polar form of the Helmholtz equation: 

d2<f>      1 d*      1 d2<j>       2 

9H+-^ + ^^ + ^ = ° (5) 

The boundary conditions for vertical no-flow channel sidewalls are 

-r—   =   0, at r — ri, the inner wall (6) 
or 
firh 
—   =   0, at r — r2, the outer wall. (7) 
Or 

The general solution for <j> that satisfies these boundary conditions is 

*   =    EaAK.(kr^J^kr)-J^r1)Y1n(kr)]e^e (8) 
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Figure 1: Schematic Diagram of Circular Channel 

N 

=    S^We^' (9) 

where k is the wavenumber of the incident wave, rj is the inner radius of the 
channel, and 7n must satisfy 

^(^KJM - JUkn)Y^(kr2) = 0, n=l, 2,..., N 

to enforce a no-flow boundary condition on the outer wall (r = r2)(see, e.g. Kirby 
et al, 1994). There are only N real values of 7n that satisfy this equation, which 
are ranked in descending order of magnitude. The largest -jn is less than kri. 

Each of the terms in the summation (Eq. 9) is a wave mode, propagating 
in the 9 direction with l/7n waves per 2ir radians, and a cross-channel varia- 
tion given by the radial term Fn(r). These terms are orthogonal to each other 
with weight (1/r) from the Sturm-Liouville theorem and provide a method for 
determining the an values. 

The values of the unknown coefficients an in Eq. 9 are found from the initial 
condition at 9 = 0, which is prescribed as a function of r. Here we assume that 
the wave height is uniform across the mouth of the channel. In actuality, there 
is an interaction between the channel and the ocean that leads to variations 
across the channel. These are assumed to be small. For <f>(r, 0) = 1, we use the 
expression for the velocity potential (9) and the orthogonality of the r terms to 
find the a„. 

an = —- 
r,0)Fn(r)dr 

Zl r^Fl{r)dr 
(10) 
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Figure 3: First Mode of Analytical Solution 

Figure 4: Second and Last Mode for Analytical Solution 
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Figure 5: Analytic Solution (Sum of All Three Modes) 

seiching problem was studied by Campbell (1953), who had to deal with waves 
in a circular (ship) testing channel. 

Parabolic Modelling 
A simple parabolic model can be easily derived from the Helmholtz equation 

(5). Since the waves will travel in the azimuthal direction (particularly for 
narrow channels), most of the oscillation in the wave form can be described by 
a periodic function in 9 and we write 

r, 6>) = A(r, 6) ei] re 
(11) 

where T is a dimensionless constant and A is likely to vary slowly in the 9 
direction. Substituting into the Helmholtz equation, we find, after neglecting a 
second derivative of A with respect to 6 (assumed to be small). 

..,    dA     .,, 2     ,2 2\ A        d (  dA 

MroW + (Pr2-*V0
2M + r-fr — 0 (12) 

The value of F was taken as kr0, where r0 is a reference radius arbitrarily taken 
as the mid-point of the channel, r, or ro = r = (ri +r2)/2. This model will work 
for narrow channels. 
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We can obtain more correct values of r0 by comparing to the 71 angular 
wavenumbers from the analytical solution. By comparing to a number of cases, 
we find an approximate linear trend (with unit slope) between (r0 — r)/r with 
the relative width of the channel k(r2 — ?*i)- Therefore for narrow channels, 
r0 = f, but for wide channels, r0 = r(l + k(r2 — ri)). 

Kirby, Dalrymple, and Kaku (1994) provide a general form for small and 
large angle parabolic models in arbitrary mapped and conformal domains. Here 
we need only the mapping for conformal domains. 

The constant depth Helmholtz equation with constant coefficients is confor- 
mally mapped into a variable coefficient Helmholtz equation: 

g + g + *V(«, „)* = <> (13) 

Here, J(u, v) is the Jacobian of the transformation. Assuming that cf>(u, v) varies 
rapidly in the propagation direction u, we write 

RelA{u,v)eiIk'>J»'2du\ (14) 

where k0 = k(u,v0) and J0 = J(u,v0) and v0 is a fixed reference distance. 
Substituting into Eq. 13 and neglecting a second derivative of A with respect to 
u, Kirby et al. find a small angle parabolic model: 

2ifc0J0
1/2^ + i^f^A + {K>J - K>J0)A + • = 0 (15) 

Ou Ou OV2 

In wide channels, the turning of the channel leads to large angle discrepancies 
between the assumed azimuthal propagation direction and the actual wave di- 
rection. To allow for these wave directions differing from the azimuthal direction 
to a greater extent than permitted by the small angle parabolic model, a wide 
angle model was developed: 

3i   d(U^)d3A i      0M 
4FJ     du     dv2     2M1'2 duw [   ' 

Kirby et al. use a conformal mapping to convert a circular channel into 
a straight channel in the (u, v) domain. One such map is w = u + w = 

TT/2 — iln(z/rm), where rm = y/rir2. For this case, the kJ0 is not a func- 
tion of u and the equations simplify. For the small angle parabolic models, it is 
easily shown that Eq. 12 and 15 are equivalent. They compared their models 
to the exact solution for a wide angle case; the simple parabolic began to fail 
60°from the channel mouth, while the wide angle model compared reasonably 
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well for the full 180°test channel. They also went further, adding nonlinear ef- 
fects to the models. 

Spectral Modelling 
Fourier-Galerkin Modelling 

Angular spectrum modelling has been used to model waves propagating over 
sloping and irregular bathymetry in regions which are bounded by a rectangular 
box (cf. the review by Dalrymple ;uid Kirby, 1992). The angular spectrum 
model was defined by Booker and Clemmow (1950) in a Cartesian coordinate 
system as the decomposition of the initial condition into progressive plane waves. 
The subsequent wave field is found by summing the plane waves within the 
computational domain. In an (x, y) coordinate system, the angular spectrum 
corresponds to a Fourier-Galerkin spectral method of solution, as the plane waves 
in this system are described by trigonometric functions. In the polar coordinate 
system, the angular spectrum model corresponds to a modal decomposition, 
based on the analytical modes shown above. Therefore the angular spectrum 
model in any coordinate system corresponds to an eigenfunction expansion for 
that coordinate system. 

The Fourier-Galerkin model (using trigonometric functions in the cross- 
channel (radial) direction) is a natural extension of the angular spectrum model 
in Cartesian coordinates (e.g., Dalrymple et al., 1989): it is based on the Fourier 
transform of the wave field in the lateral direction. In the Fourier domain, the 
wave equations are split into forward and backward propagating waves. Only 
the forward waves are kept as back-reflection is assumed to be negligible. 

Dalrymple, Kirby and Martin (1995) have used Fourier-Galerkin modelling 
to examine waves in conformally mapped channels. In the (u, v) conformal 
domain, the Fourier transform pair is: 

1     [vt> 
fn(u)   =   TF[4>{u,v)] = — /     <j>(u,v) cos [Xn(v + vb)}dv,    n = 0,1,2, .(.17) 

Zvb J-vb 
oo 

4>{u,v)    =    T/"1 [/(«)] = Yjenfn(u) cos [\n(v + vb)]    ior-vb<v<vb.     (18) 
71=0 

where vb = \ hifa/ri), which is half the channel width in the conformal domain. 

Defining 
  1       fVb     „ 
k*J(u) = —        k2J(u,v)dv. (19) 

2vb J-vb 

and substituting this into the governing Helmholtz equation gives 

g + g + PJ(l-„, = 0, (20) 
where 

v(u,v) = l-k2J/¥J (21) 
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Fourier transforming the above Helmholtz equation yields 

<Pfn 
du2 

where 

l^-W^K;1!/]]^,        n = 0,1,2,..., (22) 

7^(M) = k2J - \2
n        and        Xn = ^nw/vb. 

Splitting the problem into forward and backward propagating modes, they 
find the following equation for the forward propagating modal amplitudes,/,,, in 
the Fourier-transformed conformal domain: 

d^ = ilnfn-^TF[uT-'[f]),        n = 0,1,2,... (23) 

where 

WJ=kyr^ -d        „(«)-'      2In^M)nrae- 
21n(r2/ri) r\ — r\ 

This set of first order ordinary differential equations is solved numerically. 

After the conformal mapping, the cosines used in the Fourier transform are 
no longer an optimal basis, as the forms of the lateral eigenfunctions Fn(r) are 
far more complicated, as shown in Eq. 9. The errors increase with the width of 
the channel. This has implications also for application of the angular spectrum 
model for open coast cases where the bathymetry is varying significantly in the 
longshore direction. 

Chebyshev-tau Modelling 

Chebyshev polynomials provide another set of orthogonal bases with which 
to expand the wave potential across the channel. Panchang and Kopriva (1989) 
have used these polynomials for the solution of the mild-slope equation. Here 
a cross-channel Chebyshev transform is used to develop the governing equation 
in the transform domain, which must be scaled to be in the range of -1 to 1, so 
we define ( = v/vi,, so that the lateral boundaries are located at £ = ±1. The 
appropriate Chebyshev-transform pair is: 

Cn{u)   =   Tcmu>v)\ = —J_i JiZTfZ      d(>>    n = 0,1,2,...,   (24) 

oo 

4>{u,v)   =   T^lciu^^^Cni^T^C)       for-l<C<l. (25) 

As the Chebyshev polynomials do not satisfy the lateral boundary conditions, 
the tau method, which forces the Chebyshev sum to satisfy these conditions, Is 
used. 
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Introducing k2J and u, defined by (19) and (21), respectively, we find that 
the Chebyshev transform of (20) is 

d2°^u\ + wjCn(u) + -2cW - WJTC{V rc-\c\] = o. 
du 

The splitting in the transform domain yields: 

dA- = i7oC+(«) + -L ^J.c(2) -Wj%[vT?[c+]]j = 0. (26) 

There are significant disadvantages of the Chebyshev approach. First all 
modes are progressive, while for the Fourier-Galerkin method, only those modes 
for which jn are positive propagate (thus reducing the number of simultaneous 
differential equations to solve). Also, the splitting of the Chebyshev transformed 
equation introduces an error, which does not occur with the Fourier-Galerkin 
model; it in fact reduces the Chebyshev method to an equivalent of the small 
angle parabolic model (Dalrymple et al, 1995). 

Results 
For narrow channels, all of the methods, parabolic and spectral, work well. 

As the channel width kw increases, then the errors begin increase for all the 
methods. As an example of these errors, we increase the width in the previous 
example to w= 125 m (ri= 75 m, r2 = 200 m); now kw = 37.625, or almost 6 
wavelengths can fit across the channel. 

The exact solution, given by the analytical model, is shown in Figure 6. 
The waves entering the channel from the right, begin to diffract around the 
channel bend and to reflect from the outer radius. At about 120°, the wave field 
is dominated by reflected waves from the outer side wall. Finally at 180°, the 
wave field is reasonable complex, indicating that a 180 °bend in a laboratory 
wave channel will not result in planar waves. 

The surface elevations along the outer wall (r = r2) predicted by the exact 
solution and the small and wide angle parabolic models are shown in Figure 7. 
The wide angle parabolic model does a reasonable job for the 180°length of 
channel shown, while the small angle begins to fail at 50°. Note that the phase 
of the waves is well predicted by the parabolic model. 

For the Fourier-Galerkin model, a comparison to the exact solution for water 
surface elevations at the outer radius is shown in Figure 8 for 90°, while the 
Chebyshev result is shown in Figure 9. Both have problems with the phase speed 
of the wave as evidenced by the mis-matching of the wave crests. The Fourier- 
Galerkin results have the biggest discrepancy about 52°, but the Chebyshev 
model fairs worse, with mismatches over the entire sector from 50-90 °. 
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Figure 6: Exact Solution for Waves in a Wide Circular Channel 

Conclusions 
Waves propagating in curved channels are shown for constant depth channels 

that are annular in planform. For a given wave height at the mouth of the 
channel, the wave field within the channel is predicted by an analytic solution 
and parabolic and spectral (Fourier-Galerkin and Chebyshev-tau) methods. 

The analytic solution, by separation of variables, shows the modal structure 
of the wave field. The lowest mode, with no zero crossings across the channel, 
combines with higher order modes to form the total wave field. The wider the 
channel the more modes are present with the largest mode having an angular 
wavenumber 71 less than kr2. Higher modes have smaller values of angular 
wavenumber. 

All of the numerical models work well for narrow channels (say kw < 8) and 
become more inaccurate as the dimensionless width of the channel increases, 
with the wide-angle parabolic model doing better than the Fourier-Galerkin 
model, which out-performed the Chebyshev-tau model for the wide channel case 
(kw = 37.6). 
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Figure 7: Parabolic model Results. Analytical solution is the solid line; dashed 
line, wide angle parabolic model and the dashed dot line is the small angle 
parabolic model. 

Figure 8: Comparison of the Water Surface Variation Along Outer Wall Between 
the Exact Solution (solid line) and the Fourier-Galerkin Model (dashed line) 
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As an example, Figures 4, 4, 2 show the only three wave modes that comprise 
the total solution shown in Figure 5. The first mode (n = 0) has no zero crossing 
across the channel and the wave action is confined to the outer channel wall. 
This is the equivalent "whispering gallery" mode. The next mode (n — 1) has 
one zero crossing and a longer angular wave length (defined as 2ir/~/2 radians). 
The last mode has two zero crossings across the channel and an even longer 
angular wave length. For this case, the channel radii are ri = 75 m, r2 = 100 
m. The channel depth is 4 m and the wave period is 4 s. The corresponding 
wavenumber k is 0.301 m~l, and therefore the dimensionless channel width is 
kw = 7.53, or 1.2 wave lengths fit across the channel. It is neither a narrow nor 
a very wide channel. The three values of jn are 27.6676, 22.8667, 14.2745 from 
the gravest to the highest mode. 

Figure 2: Zeroth (Whispering Gallery) Mode for Analytical Solution 

One interesting phenomena of wide channels is the 'loss' of waves within the 
channel. Since the length of the outer circumference is greater than the inner, 
there are more waves around the outer circumference than the inner, which 
means that waves become short-crested across the channel and singular points 
in the wave phase occur, similar to that discussed by Nye and Berry (1974), 
Radder (1992), and Dalrymple and Martin (1994). 

This problem of progressive waves entering the channel with a given wavenum- 
ber k is different than the seiching problem in an annular channel where an 
integer number of waves fit along the centerline of the circular channel.   The 
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Figure 9: Comparison of the Water Surface Variation Along Outer Wall Between 
the Exact Solution (solid line) and the Chebyshev-tau Model (dashed line) 
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