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1. Introduction 

The transport of suspended particles is of interest to the coastal engineer 
because it affects the distribution of sediments and the evolution of shorelines. 
It is also important to pollutant disposal in the sea, and to the transport of 
nutrients needed for sustaining marine life. Planktonic larvae depend on waves 
and currents to carry them from offshore to the rock stratum for reproduction 
and growth. External fertilization of sperms and eggs of marine organisms are 
further affected by the convection and diffusion processes in the sea. 

Taylor's pioneer work in a steady flow through a tube has shown that diffu- 
sion, whether molecular or turbulent, is greatly enhanced by transverse shear in 
the flow. Since in the sea the bottom boundary layer is the zone where shear is 
the strongest, dispersion must be the most prominent there. For wave-induced 
boundary layers only the flow field has been studied extensively. For example 
Stokes laminar boundary layer theory has been extended to turbulent bound- 
ary layers by Kajiura(1968), Jonnson & Carlsen(1976), Grant & Madsen(1979) 
and others. The mean circulation induced in the oscillating boundary layer by 
Reynolds stresses has been studied under pseudo-laminar model by Longuet- 
Higgins(1958), Hunt & Johns(1963), Carter, Liu & Mei(1973) etc. Trowbridge 
& Madsen(1984a,b) further extended it to turbulent flows. So far there has 
been little theoretical work for predicting dispersion in wave boundary layers. 

What is needed is a theory for diffusion of particles in such a transient and 
nonuniform field of shear. In this paper we outline our recent work obtained 
by employing the theory of homogenization, which is a systematic technique 
of taking averages over the period of microscale to obtain the slow variations 
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over the microscale. The central tool is the method of multiple scales which has 
been recently applied to disperison through spatially periodic porous media. 
The same technique is shown here to be effective for wave problems where there 
is periodicity in time. Specifically we consider here the dispersion of a cloud 
of suspension with a prescribed initial distribution in the boundary layer. At- 
tention will be focussed on small amplitude waves without ambient current so 
that the flow field including the first order oscillations and second order mean 
can be worked out by a perturbation method, and use will be made of the 
fact the a the boundary layer is much thinner than the horizontal length scale 
so that the vertical variation can be decoupled from the horizontal problem. 
Starting with a convective diffusion equation for a heavy suspension for one 
particle size, we expand the concentration as a perturbation series in powers 
of the wave steepness. At the leading order the concentration is expected to 
vary only slowly in time and does not oscillate with the wave because of its 
weak velocity field. The vertical distribution is due to the balance between 
vertical diffusion and gravity, but the horizontal distribution is undetermined. 
The corresponding mathematical problem is a homogeneous boundary value 
problem in the vertical direction. At the next two orders the fluctuation from 
the mean is caused by the oscillatory velocity field and consists of both oscil- 
lating and slowly varying parts. Their time averages over a wave period are 
governed by two inhomogeneous boundary value problems in the vertical direc- 
tion. The solvability condition which imposes constraints on the horizontal and 
temporal variation of the leading order concentration, leads to the the effective 
diffusion equation. The effective horizontal velocity of convection is shown to 
be a weighted average of the induced streaming velocity in the boundary layer. 
For the special model of constant eddy visocity, the convective velocity and 
dispersivity tensors are found explicitly in terms of the oscillatory velocity field 
outside the boundary layer. Specific intitial value problems for a prescribed 
initial concentration cloud will be solved for the following cases, with emphasis 
on the effects of the initial position of the cloud on its final destiny. 

2. Perturbation analysis of diffusion in the boundary layer 

We assume that the particles are so small that its velocity is nearly equal 
to the mean velocity of the local fluid, and that the volume concentration is so 
small that the suspension cloud does not alter the dynamics of the fluid motion. 

Let C denote the volume concentration, — w0 the fall velocity of the sus- 
pended particles, and DH,DV the eddy mass diffusivities. The diffusion equa- 
tion for the concentration C of a very dilute sediment cloud can be approximated 

by 

dC     dujC      d „ .„       d   /      dC\      d  /     dC\     ,n A. 



HEAVY SUSPENSION DISPERSION 3191 

where j = 1,2 and UJ represent the horizontal components of the fluid velocity 
and w the vertical component. The crucial boundary condition on the seabed is 
a matter of considerable uncertainty. For example in steady unifom flows there 
should not be any net exchange of particles, hence 

dC 
flv-r- + woC = 01 (2.5) 

oz 

This leads to the profile of C(z)/C(0) but leaves the value of C(0) undetermined. 
For spatially nonuniform flows Sayre (1969) proposed the following empirical 
relation 

dC 
Dvlr- + (l-a)woC + W = 0, 

oz 

where a is the bed absorbency coefficient representing the probability that a 
particle settling to the bed is deposited there, W the average rate of local 
entrainment. Direct measurements of a and W are obviously difficult and none 
is known to have been made. To simulate resuspension in wave boundary layers 
it has been proposed that the rate of concentration flux is an empirical function 
of time. Others have suggested that the bed concentration is proportional to 
the excess shear stress over the critical stress to initate the bed load movement. 
These empirical consideration are necessary practical measures when local scour 
is an integral part of the sediment process. However, there are situations where 
the sediments or contaminants are dumped from ships, or released from a sewage 
outfall, and not supplied locally from the seabed. Then as long as they can be 
kept in suspension, the no-flux condition is still appropriate. We shall confine 
our attention to such cases where the bed is non-erodible bed and particles so 
small that they are kept in suspension for almost any bed shear. It is reasonable 
to take a = W = 0 so that 

dC 
Dv—+woC = 0,    z = 0 (2.6) 

oz 

suffices. 

At the upper edge of the boundary layer we assume 

C = 0, z -> oo. (2.8) 

In addition, the initial horizontal distribution of the depth averaged concentra- 
tion is prescribed in some source area. Thus the physical problem is to seek the 
long-time diffusion of a sediment cloud from a localized source. 

In oceanic flows, momentum eddy diffusivities in horizontal and vertical 
directions may be quite different (see e.g., Pedlosky, 1979), but the value of 
the horizontal diffusivity is difficult to estimate reliably. In past theories on 
dispersion, two assumptions are common. One is the equality of momentum and 



3192 COASTAL ENGINEERING 1992 

mass diffusivities (Reynolds analogy, Taylor, 1953). The second is the equality 
of the longitudinal and transverse diffusivities (Taylor, 1953; Sayre, 1969 and 
Sumer, 1974). In wave boundary layers, there is the added complexity that the 
eddy viscosity may depend on time. However, for coastal applications, most 
models of eddy viscosity are time-independent (see Sleath 1992 for survey); this 
simplifying assumption is also adopted here. 

In the present problem there are several characteristic length scales in 
the vertical direction. The first is the thickness of a steady concentration 
layer due to the balance of downward sedimentation by gravity and vertical 
diffusion, d ~ Dv/w0. Associated with fluid oscillations there are two ad- 
ditional vertical length scales, i.e., the oscillatory boundary layer thicknesses 
8 ~ yj2vel<jj and Sp ~ ^j2D\r/w, For generality, all three scales are as- 
sumed to be comparable, i.e., implying that 

/   JT   \ 2 

Sc=i~teJ=0(1)' (2-9) 

where 5c is the Schmidt number. 

We now consider small amplitude oscillations of high enough frequency so 
that both the wave steepness, kA, and the ratio of the oscillatory boundary 
layer thickness to the wave length, kS, are small,   i.e. 

e = kA<l, (2.10a) 

p = k6<[2£<l. (2.106) 
V uv 

Let us expand the velocity field («j, w) in powers of e, 

ui = u(
i
1) + u(2) + ...,    i = l,2;        w = w{1) + w{2) + ..., (2.11) 

where the superscripts indicate the order in powers of e, i.e., u\ , w^ = 0{en). 
Clearly there are two distinct time scales in the diffusion process, one for the 
vertical diffusion across the boundary layer, 0(82/Dy), and the other for the 
horizontal diffusion across a wave length, 0(l/fc2Z?H). The ratio between the 
two is 0(k282DnlDv) — 0(fi2). It is therefore natural to introduce multiple 
scale coordinates for time, t and t' = /32t. Assume for generality e = 0(/?) so 
that we may use 

T = e2t (2.12) 

instead of t', and expand C as a perturbation series 

C = C(0) + C(1) + C(2) + . • •, (2.13) 
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where C^ is independent of the fast time scale and C^n\n = 1,2,... dependent 
on t and T. At the leading order in e, C^ satisfies the homogeneous ordinary 
differential equation 

-W°^J- = & (Dv-dT)'     °< *< °°' (2'14) 

with the homogeneous boundary conditions 

a* 
C(o)=0,        *-+oo. (2.16) 

iK.CC'+fly^- =0,        2 = 0; (2.15) 

The nontrivial solution is 

where 

C(0) = CF, (2.17a) 

w„ 
F = exp(- / jf-dz] (2.176) 

(-/• 

gives the vertical structure and 

C = 6(xi,T), i = 1,2 (2.17c) 

gives the horizontal variation of C^°\ As in the steady uniform flow C^0' is so 
far unknown. At 0(e), the period-average of C^'(x, y, t, T) can be shown to be 
zero. Assuming the first order fluid velocity in the boundary layer to be simple 
harmonic, the time-harmonic part of C^ is forced by various products of ir1' 
and C'0' and their derivatives. Therefore C'1' can be solved in terms of C^0' 
and its horizontal gradient. At 0(e2), the period-average of C^1' satisfies an 
inhomogeous differential equation similar to (2.6). Its solution implies that the 
depth average of th forcing terms must vanish. This leads to 

'<"+ k^F)&\' -£<"• 'c">) + ^"i]<?"> (2'I8) 

Once a specific choice of Dy and Du is made, the right hand side of (2.18) can 

be found in terms of C^°\ hence C. This then gives the effective convection- 

diffusion equation for C. As will be identified later, u\ on the left is Eulerian 
streaming in the boundary layer. The first term on the right represents the 
dispersion due to oscillatory shear in the boundary layer and the last term the 
horizontal turbulent diffusion. 

Though the form is entirely expected, every term in (2.18) has been deduced 
here without additional closure hypotheses. 
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In the rest of the paper the simplifying assumption DH = Dy — D = 
constant will be made to enable explicit analytical results. 

3. The Stokes effective coefficients 

For constant eddy diffusivities the first order velocityu is the well known 
solution of Stokes the second order mean is the Eulerian streaming inferable 
from Hunt and Jonhns (see Mei 1983). Details of C^1' is described elsewhere. 
After considerable algebra we get the effective diffusion equation for C: 

dC_     _9 
dT + dx 7 K) 

d2C        d_ 
dxjdxj     dx{ 

Vi 
&c 
dxi 

where 
1     / dV* dU* dV* 

W = -» f H.Uo^ + H2V0^ + H3U0^ 
UJ    \ ox ay ay 

1    /        dV* dV* dU* 
V = -»( HXV0^- + H2U0^ + H3V0^- 

to     \ ay ox ox 

*^xx  — ^ 

£>„* = & 

L^xy — J^ —(u:v0) 

l^vv — ^ £iv.,» 

(3.1) 

(3.2) 

(3.3) 

The coefficients H1,H2,H$ and H^ are functions of M and Sc. 

Equation (3.1) may be normalized by defining V0 to be the maximum of 
the first order velocity (U„ + V2)1!2 and letting 

ul, KJ/^j t'= (3.4) 

where primes denote dimensionless quantities. Then 

DC 
dt> 

d d 

i+M«s)-M« 
PC 

(3.5) 

wher 
/ 377'* dU'* dV* 

/ dV* dV* dU'* 
V = »(H^^r + H2U'0^r + H3V!     ° 

dy> dx' ° dx 

Ky = v'xy = u(HAu'0*v:), 

D' = D/(U*J«>), 
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in which K\- are components of the total dispersivity tensor. 

In steady flows in a channel or a tube the longitudinal dispersion coefficient 
is usually much greater than diffusivity (molecular or eddy). It can be shown 
that the shear-enhanced dispersion can be much greater than the eddy diffusiv- 
ity if the ambient oscillation is sufficiently intense or the frequency sufficiently 
low. Otherwise the two can be comparable. 

We now examine the spatial variations of the dispersion phenomenon by 
specific examples. For brevity, primes on dimensionless quantities will be drop- 
ped for convenience in later discussions. The values of Hi, J?2, H3, JJ4 are for 
M = Sc=l. 

4. Two-dimensional diffusion of a localized cloud in bidirectional 
waves 

We consider a system of short-crested waves whose inviscid velocity ampli- 
tudes near the seabed are described in dimensional variables by 

U„ = 2zC/ocos!9sin(yh:cos0)e^sin(\ 
(4 1) 

V0 = 2U0 sin 6 cos(kx cos 0)e'ky sin e 

This corresponds to a plane wave incident towards and reflected by a sea wall 
along the y axis. The angle of incidence is 8. In normalized variables (with 
primes omitted), we have 

U0 = 2i cos 6 sin(a; cos d)eiys'm e, 
•   •   .   • (4-2) 

V0 = 2 sin 6 cos(;r cos 6yy sme 

It is easy to calculate the following dimensionless coefficients, 

U = [23£(.fl"i)cos3<? + (3fc(#3) - 9t(H2))sinesin28] sin(2:r;cos6>), 

V = [23(#i) sin3 9 + S(H3) cos 6 sin 26] 2 cos2 (x cos $), 

Kxx = 4SR(jff4) cos2 6 sin2(;r cos 6) + D, 

Kyy = 45R(if4) sin2 0 cos2(a; cos 6) + D, (4.3) 

Kxy — —Kyx = 9:(ff4)sin2#sin(2:Ecos0). 

Note that the tensor {Kij} is not symmetric. 

Let us examine the diffusion due to the impulsive release from a localized 
Gaussian cloud 

C(x,y,0) = CoexP{-[(x-xcf+(y-yc)
2]/L2}. (4.4) 
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The assumption of Sc = M = 1 is still kept, for which 3£(-ffi) = —0.122 
$(#!) = 5t(H3) = 0.659, 3?(#2) = 0.033, 5ft(#3) = -0.155, 3J(#4) = 0.024 and 
3=(il4) = 0.234. Choosing D = 10~3 and L2 = 0.1, the initial value problem is 
solved numerically by a Peaceman-Rachford ADI (alternating-direction) finite 
difference method. Three angles of incidence and various positions of the initial 
source center have been considered. 

As a sample we consider oblique incidence 0 = 7r/4, then 

U = 4=S(ffi + H3~ H2) sin V2x = -0.219 sin y/2x, 
v2 

V = V23(H! + #3)cos2 4= = 1.864cos2 -?=, 
v2 y2 

(4.5) 

and 
Kxx = 2&(#4) sin2 -^= + D = 0.048 sin2 -?= + D, 

v2 v2 
Kyy = 2%{Hi) cos2 4= + D = 0.048 cos2 -^= + D, (4-6) 

v2 v2 
KX!, = -Kyx = a(ff4)sin(V2a;) = 0.234 sin(V2cc). 

Thus for xc = 0, V is dominant; the cloud is convected along the line x = 0 
and diffused faster in the y than in a; as shown in figure 1. For £ccos0 = 
Xc/y/2 — T/2, iT„ > Kyy, the nonuniform convection velocity causes the cloud 

to bifurcate towards the lines xc/\/2 = 0,7r where Kyy > Kxx, as in figure 2. 
For a:ccos# = 7r/4, most of the pulse is convected to the left, with the front 
leading the rest in the shape of an eel, as shown in figure 3. 

We have also considered a sustained source and solved the inhomogeneous 
diffusion equation 

+iM = i{K^+s^^ t>0-     w 
The source function 5 is chosen to be a cosine-shaped distribution centered 
around (xc,yc) and maintained at a steady rate after t =• 0. A plume is formed 
with the front evolving in the same way as the impulsively released cloud, but 
the plume is always connected back to the steady source. We shall, therefore, 
omit the results here. 

5. Concluding remarks 

In this paper we have given general formulas for convections and diffusion 
in a wave boundary layer. As an example we have examined a localized cloud 
in a bidirectional wave system which may represent an obliquely incident and 
reflected wave system near a sea wall. The cloud drifts to the nodal line close 
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to its initial position. When the particle cloud is initially midway between two 
nodal lines along the y axis. The cloud then bifurcates towards the two nodal 
lines on each side while the peaks diminish. 

Future improvments must include better models of turbulence, deposition 
and resuspension. For fine cohesive sediments possible coagulation is worth 
studying. Finally it is interesting to examine dispersion in the surf zone where 
breaking waves induce longshore currents. 
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Figure 1: Evolution of a concentration released in a bidirectional wave. Initial 
position at xc = 0. 
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Figure 2: Evolution of a concentration released in a bidirectional wave. Initial 
position at xc/\/2 — 7r/2. 
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Figure 3: Evolution of a concentration released in a bidirectional wave. Initial 
position at xc/y/2 = 7i"/4. 




