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WAVE-INDUCED PORE PRESSURE ACTING 

ON A BURIED SUBMARINE PIPELINE 

Waldemar MAGDA * 

ABSTRACT 

The response of a sandy seabed to surface water waves, with a special 
emphasis to wave-induced excess pore water pressure oscillations is studied here 
in relation to the vertical stability of submarine buried pipelines. The main 
object of the peper is to present a study of the distribution patern of the pore 
water pressure acting around the pipeline, and to calculate the seepage force, the 
up-lift force particularly, affecting the pipelne stability, under the assumption 
of compressible both the pore fluid and soil skeleton, for the case of an arbitrary 
seabed depth as well as for the infinite thickness of the subsoil. 

INTRODUCTION 

Generally, the problem associated with buried submarine pipelines de- 
pends, on the water and wave conditions. The wave climat plays a very im- 
portant role and can influence the interaction between the submarine buried 
pipeline and the surrounding soil significantly. In practice, pipeline located in 
water depths up to 60 m are buried, whilst the cover must have a thickness 
ranging from 0.5 to 1.0 m, depending upon the water depth and the covering 
material. 

Submarine pipelines buried in a seabed are an engineering means of trans- 
port for crude oil and natural gas from "off-shore" oil fields onto a land. When 
waves pass over a permeable sandy seabed, pore water pressure is continuously 
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induced within it. Among all environmental loads usually considered in "off- 
shore " pipelines design, the wave-induced pore water pressure plays one of the 
most important role. The most critical problem in determining the stability 
of a pipeline buried in permeable soils under wave loading is the prediction of 
the pore water pressures in the soil in a vicinity of a pipeline (Dursthoff and 
Mazurkiewicz, 1985). An excess of the pore water pressure can cause instability 
of a seabed, liquefaction of the upper sand layer and then floatation which can 
even lead to a failure of a submarine pipeline. The wave-induced excess pore 
water pressure developed in a vicinity of a buried pipeline is considered as a one 
of the main parts in a design procedure. The wave-induced uplift force acting 
on the pipeline is comparable to the displaced water weight if the pipeline is 
located in the pore water pressure boundary layer and an inadequate design 
can cause flotation of pipeline and, subsequently, can lead to costly failures. 
Therefore, it is essential to improve our knowledge on the interaction among 
waves, seabed and a submarine pipeline. 

-ft 0 Po 

Figure 1   Definition sketch for the uplift force analysis. 

It is a very complex and challenging task to define properly the wave- 
induced excess pore water pressure field around a submarine pipeline buried 
in a porous seabed. Many researches simplyfied the problem assuming both 
the porous medium and pore water incompressible. Under this assumption Lai 
et al.  (1974), Liu and O'Donnell (1979) and Lennon (1985) investigated this 
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problem using a numerical analysis. Liu and O'Donnell (1979) considered two 
different types of waves acting on the seabed, namely, monochromatic and soli- 
tary, and introduced the integral equation method to solve the resulting integral 
equation. In a numerical solution procedure developed by Lennon (1985) the 
pressure distribution on the pipeline was calculated using also the boundary 
integral equation method (BIEM). Employing conformal mapping techniques, 
MacPherson (1978) and McDougal et al. (1988) presented analytical solutions 
for the case of an infinite depth of the seabed, whereas Monkmeyer et al. (1983) 
developed a solution using so-called 'image pipe" method which, comparing to 
the former, can be applicable also to a soil layer of a finite thickness. 

The common feature in the studies mentioned above is that the effect of 
compressibility of both the pore water and porous medium was neglected. More- 
over, some researchers showed that there is a difference between theoretically 
computed values of pore water pressure and those observed in experiments. In 
laboratory studies on the stability of buried pipelines, Philips et al. (1979) con- 
cluded that potential theory did not generally give an accurate representation of 
the transmission of wave-induced pressures through the sand, when comparing 
to the test results. 

Reported differences between theoretical and experimental results can have 
three main reasons, namely: 

- the theories are based on the Darcy model and therefore they do not con- 
tain all important soil/water parameters (incompressible pore water and 
nondeformable soil skeleton are assumed), 

- boundary conditions applied into computation are not realistic, specially 
when comparing with laboratory tests environment (seabed layer of a finite 
thickness), 

- values of parameters used in calculations are not exactly the same like these 
'in-situ' which accompany laboratory investigations. 

The proposed method of calculation is based on: 

- the pore water pressure theory where the main soil and pore fluid pa- 
rameters are considered and a finite sand bed layer system is taken into 
account, 

- the 'image pipe' theory which is able to solve both the upper (at the sea 
bottom) and the lower (at finite depth of the seabed layer) boundary con- 
ditions, and also the boundary condition induced by presence of a pipeline 
(perturbation or scattering effect). 

An implementation of certain soil and pore water parameters, e.g. com- 
pressibility and permeability, leads not to the Laplace equation, which depends 
only on a geometry of the problem, but to the storage equation, which is much 
more complex in form. Using Madsen's (1978) general solution of this equation, 
an analytical solution for a finite thickness of the seabed layer has been derived 
and verified qualitatively in numerous large-scale laboratory experiments in a 
big wave-flume, and quantitatively in small-scale laboratory tests (Magda, 1989, 
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1991). These tests enabled to study influences of single soil/water parameter 
changes on the character of the pore water pressure damping within a porous 
medium. A great attention has been put to modelling and controlling different 
degrees of saturation which is of a special interest for coastal and tidal areas 
where, because of a continuous water table movement and wave-breaking zones, 
the sediment is not and cannot be treated as a saturated medium. 

MATHEMATICAL FORMULATION OF THE PROBLEM 

Introducing a pipeline-like structure into a soil body, it is not so easy to 
derive a solution to the governing equation for flow of a compressible pore fluid 
in a compressible porous medium (e.g. given by: Madsen, 1978; Yamamoto et 
al., 1978). Therefore, after some mathematical manipulations, and presenting 
the solution in terms of the pore-water pressure and effective stresses, a new 
form of the governing equation can be obtained (Okusa, 1985): 

v!(vJ-^)'=° <" 
where p is the wave-induced excess pore water pressure, c„ is the coefficient of 
consolidation, t is the time, and V is the Laplacian operator. The coefficient of 
consolidation, c„, can be defined for the unsaturated soil as 

n 1 — 2u 
+ 

K  '  2G(l-fx) ^ 

where 7 is the unit weight of the pore fluid, k is the isotropic coefficient of soil 
permeability, n is the porosity of the porous bed, \i is the Poisson's ratio, K, is 
the bulk modulus of water, and G is the shear modulus of soil. From this it is 
easily seen that the solution of Eq. (1) can be formulated as a mixed solution 
of both the Laplace equation 

V2p = 0 (3) 

and the consolidation (diffusion) equation 

V,-I|- (4, 

in two dimensions. It has to be pointed that sometimes (e.g. Qiu and Sun, 
1987) the simplification of the solution to the governing flow equation is going 
too far and, due to the total elimination of the soil displacements, the problem 
is reduced only to the consolidation equation. However, the correct solution 
has to be treated as a sum of the general solutions to the last two differential 
equations of the second order. 



SUBMARINE BURIED PIPELINES 3139 

SOLUTION METHOD 

Assuming that the wave-induced hydrodynamic pressure at the seabed is 
described by the periodic function 

p = Pg exp[i(ax — ut)] (5) 

where a = 2ir/L is the wave number, L is the wave length, u> = 2TT/T is the 
angular velocity, T is the wave period, and PQ is the pressure amplitude at the 
seabed, and due to linearity of the above mentioned component equations, all 
the unknowns in the problem considered (among others: the wave-induced pore 
pressure) are periodic with a and w. Then, the wave-induced pore pressure p is 
represented by 

P — f(z) exp[i(ax — cot)] (6) 

where f(z) is a function of z only. Introducing this into Eqs. (3) and (4), 
the general solution is represented by the sum of the solutions from the two 
following differential equations 

%-{?-$)'-> <•' 
Because the governing equations are linear, the wave-induced stresses can 

be obtained by superposing, as previously indicated by Yarnamoto (1981) and 
Okusa (1985a). The general solutions fi of Eq. (7) and f% of Eq. (8) are 

/i = CL exp(az) + DL exp(-az) (9) 

ft — Cc exp(nz) + Do exp(-Kz) (10) 

where CL,CC,DL,DC are integral constants depending on the boundary con- 
ditions and 

/   2 W 
a? i (11) 

For the case of infinitely thick homogeneous sediment, the wave-induced pore 
pressures, stresses, and displacements must tend to zero as z —> oo. Therefore 
(Okusa, 1985): 

CL + Cc = 1 (12) 
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_    2(l + /i)B _     3(1 - g) 
CL " 3 + 2/i*-JB C° - 3 + 2/iB-B (13) 

where the Skempton's pore pressure coefficient B is defined as 

*-' + ¥ (») 
where a is the volume compressibility of the sediment, (3 is the volume com- 
pressibility of the pore fluid. 

Now, using a complementary wave loading method, i.e. two waves having 
the same phase and different amplitudes (Cx, and Cc) are assumed for solving 
the Laplace equation and consolidation equation separately, one can write 

p = CLxL + G0xC (15) 

where L and C denote values obtained from the solutions of Laplace equation 
and consolidation (diffusion) equation, respectively, assuming for both of them 
a unit amplitude of the inducing hydrodynamic pressure wave at the seabed. 

A contribution of the particular components, supplied by the solutions 
of Laplace equation and consolidation equation, to the total solution of the 
problem is illustrated in Tab. 1. 

Degree of Saturation CL Go 

S = 1.00 0.998 0.002 
S = 0.99 0.855 0.145 
S = 0.98 0.748 0.252 

S = 0.97 0.665 0.335 

S = 0.96 0.598 0.402 
S = 0.95 0.544 0.456 

Table 1   Contribution of single components (from the Laplace equation 
and consolidation equation) in the total solution, with regard 
to different saturation conditions. 

It has to be stressed once more that the influence of partly saturated seabed 
conditions is predominant for the investigated case of the uplift force acting on 
a buried submarine pipeline. Therefore, the both solutions to the Laplace equa- 
tion and consolidation equation have to be always taken into account simulta- 
neously. To confirm an existence of partly saturated conditions in a natural 
environment, a measuring campaign was conducted on Norderney Island (Ger- 
many). After sampling and statistical analysis of the measured and calculated 
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results, the mean value of the degree of saturation was found to be 0.975 (Magda 
and Davidov, 1990). 

Fig. 2 shows a set of pore pressure profiles with depth calculated for the 
singular solutions, e.g. the Laplace and consolidation problems, considered 
separately, comparing them with a solution for the compounded problem of the 
compressible fluid flow through compressible media. 

v 
Q 

Degree of saturation, S = 0.97 

-0,2 0,2 0,4 0,6 

Pore pressure, p/Po [-] 

0,8 

Figure 2   Comparison of different solutions for the pore pressure 
distribution with depth. 

A similar analysis can also be performed for the case of a finite thickness 
of the seabed layer. The formulas describing coefficients CL,CD,DI,,DD are, 
however, much more complicated. 

The solution to the Laplace equation, Eq. (3), for the boundary conditions 
problem created by a finite thickness of the seabed layer and a pipe-like structure 
embeded in the soil sediment, is not trivial but does not bring any troubles. As 
documented in the introduction, it is possible to obtain this solution using, for 
example, one of the reported conformal mapping techniques. 

It is not an easy task to solve the consolidation partial differential equation, 
Eq. (4), in the Cartesian coordinate system for the identical to the above men- 
tioned boundary conditions problem. Therefore, to overcome the difficulties, the 
solution method presented below is based on the cylindrical (circular-cylinder) 
coordinate system. 

The consolidation equation, also known as diffusion or heat conduction 
equation, is considered. It can be presented in general form as 
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VV = ^ (16) 

The solution of any of the scalar equations tike: the Laplace equation, the 
Poisson equation, the diffusion equation, the wave equation, the damped wave 
equation, transmission line equation, and the vecotr wave equation may be 
reduced to a solution of the scalar Helmholtz equation, or its special case - the 
Laplace equation (Moon and Spencer, 1971). For the consolidation equation 
(16), let 

U(ui)T(i) (17) 

where U is a function of the space coordinates and T is a function of time only. 
Substitution into the consolidation equation allows the separation of the time 
part, giving 

Y
2
U + KU = 0 (18a) 

^ + K2h2T = 0 (186) 
at 

where K is the separation constant. 
The solution of the Helmholtz equation (18a) depends on the space vari- 

ables and the boundary conditions, and will be different for each problem. The 
equation in time (18b), however, is independent of the coordinate system. Thus 
the solution of the consolidation equation is always 

<p = U(u1,u2,us)e-K2hh (19) 

Geometry of the problem, i.e. circular pipe buried in a seabed (see Fig. 1), 
advices to use the circular-cylinder coordinates 

u\ = r 0 < r < oo x — r cos 6 

u2 = e 0 < 9 < 2TT , y = r sin 9 

u3 = z — oo < z < +oo z = z 

(20) 

Rewriting the Helmholtz equation (18a), U must satisfy, in polar coordi- 
nates, 

Separation of the Helmholtz equation (21), in two-dimensional polar coor- 
dinate system (in a plane problem 9 is independent of z and the circular-cylinder 
coordinate system is simplified and becomes the polar coordinate system), leads 
to (Moon and Spencer, 1971): 
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a It      1 dit      .   o      A   x _       _ /_ _   . 

Y+;*+{K-*)R=0 (22a) 

^ + A20 = O (226) 

where R, 0 are functions of r, 0, respectively, and A and c are separation 
constants. These equations are solved for R and 0, and the solution of the 
Helmholtz equation has a following form 

U(r,0) = R(r)Q(0) (23) 

Differential equation (22b) has a following general solution 

0(0) = acosA0 + /3sinA0 (24) 

For the governing problem, U is a harmonic function of 0 with a period 27r, 
therefore, 0 must have the same feature. It is possible only when A is rep- 
resented by an integer number. By limiting the range of values of A only to 
positive ones (A = 0,1,2, ...,n,...) both functions Q{0) and R{r) can be written 
accordingly as 

Qo(0),®i(0),@2(0),...,en(0),...    ;    R0(r),R1(r),R2(r),...,Rn(r),...      (25) 

In this way, an infinite system of solutions for Eq. (23) is obtained which now 
can be written as 

oo 

U(r,0) = ^T[an cosn0 +/3n sinn0]Rn(r) (26) 
re=0 

Eq. (22a) can be considered as the Bessel equation which in general form 
can be written 

d2W      1 dW     ,  ,   ,       ,       , ,   ,,„,     „ .„_. 
-TT + --J- + (ji •2+q2-s2w2)W = 0 (27) 
aw*      w aw 

The general series solution of Eq. (27) may be written, for s ^ integer, 

W = AJ,(ti,q,w) + BJ-s(n,q,w) (28) 

These series are valid everywhere in the finite complex plane. If s = n, an 
integer, J-s is no longer independent of J, and the general solution of Eq. (27) 
is 

W = AJn(ii,,q,w) + Byn(n,q,w) (29) 
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where Jn and yn are the Bessel wave functions of the first and second kind 
(also called the Weber function), respectively. If fi = 0 (this is the case) it can 
be concluded that the Bessel functions degenerate and Eq. (29) becomes 

W = AJn(qw) + Byn(qw) (30) 

Introducing the Hankel functions (i.e. the Bessel functions of the third 
kind, which are linear combinations of the Bessel functions of the first and 
second kinds) 

H^\qw) = Jn{qw) + iyn{qw) (31) 

H^\qw) = Jn(qw) - iyn{qw) (32) 

where: W„ , W„ are the Hankel functions of the first and second kind, re- 
spectively, and of order n, the general solution of Eq. (27) may be also written 
(Moon and Spencer, 1971): 

W = AH%\qw) + BH(Z\qw) (33) 

Comparing now Eq. (22a) and Eq. (27), and replacing W by R and qw by rer, 
one has 

R = AH^(KT) + BH^(KT) (34) 

Two-dimensional Helmholtz equation (18a), describing diffraction, after 
transformation into the polar coordinates system gets a form which is known 
as the Bessel equation, the solution of which, in two-dimensional scattering by 
localized objects in a sea of constant depth can be constructed by superposition 
of the following terms (Mei, 1989): 

(35) 
^'Hj      { sm.nO 
H^\KT))     \ cosn0 

Because of the asymptotic behaviour of the Hankel functions 

{K:!}"(=)V*<-S-T)]   m 
7vn' must be discared when re is complex with a positive real part (Mei, 1989). 

Assuming the hydrodynamic bottom pressure oscillations of a unit ampli- 
tude, expressed by harmonic solution 

p = e~iut (37) 
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where i denotes the imaginary unit, and comparing it with Eq. (6), the separa- 
tion constant can be expressed by 

K=M (38) 
V  ^v 

In fact, K is a complex number and can be presented in a general form as 

K = va + ib        where        a = 0    and    6 = — > 0 (39) 

This can also be written 

K = a1 + ib' (40) 

Comparison of the last two expresions shows that 

a',b' >1    when    6>1        and        0<a',fe'<l    when    0<6<1     (41) 

So, b' is always positive without any respect to the positive value of b (b > 0). 
And thus, the general solution for the scattered (radiated) waves, also pore 

water pressure waves, may be written as 

oo 

U = ^2(an cosnO + 0n sinn0)H^\kr) (42) 
n=0 

An implementation of the "image pipe" theory (Monkmeyer et al., 1983) 
allowed to fulfil all requirements concerning the boundary conditions of the 
problem. 

RESULTS OF CALCULATION 

An application of the method is illustrated by some calculation examples 
where the meaning of the seabed saturation problem is specially emphased. 
For a certain geometry (depth of burial, pipeline outside diameter) the pipeline 
uplift force is computed, taking into account values of the degree of saturation 
from the range between 0.85 and 1.00, for which the soil can be considered as 
a saturated soil but with the pore fluid having some degree of compressibility 
(higher than a pure water) due to the presence of the air bubbles (Esrig and 
Kirby, 1977). 

The solution to Eq. (1) enables to investigate the problem of pore pressure 
gradient, especially in a vicinity of the seabed surface. Performing series of 
calculation, the most unfavourable (from the pressure gradient point of view) 
phase of the pore pressure oscillations can be detected and then, it becomes 
feasible to calculate the most critical value of the pipeline uplift force.   And 
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Figure 3    Definition sketch for the uplift force analysis (influence of 
different saturation conditions). 
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Figure 4    Pipeline uplift force versus different saturation conditions of 
seabed sediments. 
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thus, Fig. 3 shows the governing problem and Fig. 4 illustrates the results of 
calculations for a certain set of data where the uplift force is influenced by 
different values of the degree of saturation. 

It can be easily recognized that the pipeline uplift force depends very 
strongly on the degree of saturation and has a maximum value for the degree 
of saturation very close to 1.00. 

Changing a value of the degree of saturation with a step of 0.01 (i.e., 
1 %), for example, the most critical situation can be easily omitted. Therefore, 
looking for an absolute maximum value of the pipeline uplift force, it is required 
to apply even smaller increment of the degree of saturation when performing a 
parameter study by means of numerical calculations to obtain a precise picture 
of possible variations in the pipeline uplift force. 

The elaborated method seems to be very useful in a optimalization design 
procedure and gives the result which reflects, among others, the most inconve- 
nient case for the pipeline stability with respect to saturation conditions of the 
seabed which are, on the other hand, extremely difficult and almost impossible 
to determine 'in-situ', using engineering methods of testing, with the exactness 
which is comparable to the necessary step of calculation. 

The calculation procedure, presented in the paper and based on the ad- 
vanced pore water pressure theory, make it feasible to incorporate important 
soil/water parameters into the pipeline uplift force analysis. Obtained values 
of the uplift force appear to be greater than these computed from the potential 
theory; this finding is in accordance with some observations from laboratory 
tests reported in the literature. 
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