
CHAPTER 233 

Water Wave Propagation in Jettied Channels 

Robert A. Dalrymple1, F., ASCE 

Abstract 

Navigational channels are frequently maintained by the use of jetties. These 
stabilized channels often form long straight waterways which permit the passage 
of tidal flows and waves into harbors, lagoons, or rivers. This paper concerns 
the decay of the waves down the channel due to energy losses within jetties. The 
analysis involves the use of an impedance boundary conditions at the channel 
side walls to model the wave dissipation there. The wave motion is described by 
an eigenfunction expansion for the velocity potential within the channel, with 
and without tidal currents. 

For the case that the water wave length is long with respect to the channel 
width and no currents are present, the wave height decay down the channel can 
be described by an exponential decay, H = H0 e~Vx, where T = •yxKp.kb), 7 is a 
(real) damping factor, k is the wave number, and 26 is the width of the channel. 
For the case of a mean current in the channel, the same expression results, but 
for a different form of the wave number, (Eq. 24). 

Introduction 

Stabilized entrance channels often form long straight waterways which permit 
the passage of tidal flows and water waves into harbors or lagoons. This paper 
concerns the interaction of water waves with rubble mound jetties, including the 
significant energy loss into the jetties, due to turbulent energy dissipation. 

The energy decay down a channel may be calculated if the rates of energy 
loss are known at the bottom and the sides of the channel. The conservation of 
energy flux down the channel is 
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where the wave energy flux is T = ECg(2b) = ^pgH2Cgb, where p is the fluid 
density, g is the acceleration of gravity, H, the wave height in the channel, Ca is 
the group velocity of the waves, and b is the half-width of the channel. V is the 
energy dissipation per unit length of channel. This expression can be rewritten 
as 

dH =        2V 

dx        pgHCgb 
l ' 

Hunt (1952) examined the decay of wave height due to laminar boundary 
layers at the sides and the bottom of a rectangular impermeable channel. In 
this case, T> is proportional to H2, and therefore Eq. 2 can be written as 

which leads to the following expression for wave height down the channel, 

H(x) = H0 e~ra: (4) 

where T depends on the viscosity of the fluid as well as the other factors. 

Battjes (1965) studied the damping of waves in a rectangular wave channel 
with roughness strips attached to the sidewalls along the length of the channel. 
The strips were mounted vertically over the depth on the sides of the channel 
with a fixed spacing. Vortices shed by the wave-induced flow past the strips 
resulted in a decrease in wave height down the channel. Battjes examined a 
'turbulent damping' such that the dissipation as the side walls was assumed to 
be proportional to H3, 

leading to 

H = (1 +Hf>H0z) (6) 

The experiments were conducted in an approximately 27.5 m long, 3.0 m wide 
test section of the channel. To get an adequate decay distance, the wave height at 
the end of the test section after one run, was used as the input to another test. 
By coupling experiments in this fashion, data on wave height versus distance 
was generated for an equivalent tank, 6 to 7 times longer. However, since the 
phenomenon he discusses is nonlinear and cross-tank oscillations occur, it is not 
likely that this is a valid experimental approach. 

Isaacson (1978) applied the same formula as Battjes for the wave height down 
a prismatic trapezoidal entrance channel laboratory model lined with stone, 
varying the side slopes. He found that there was a strong dependency of (3 on 
wave period, with (3 increasing with period. 
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Melo and Guza (1991a,b) in an interesting computational and field study 
showed that the wave height down the centerline of an entrance channel de- 
creased rapidly, mostly due to the diffraction of the waves into the absorbing 
jetty structures. They also point out that the diffraction through a breakwater 
gap of the same width as the entrance channel gives similar damping behavior 
down the centerline. If the channel is narrow with respect to the wave length of 
the incident waves, then the diffractive damping is more severe, as discussed by 
Losada et al. (1990). The computational analysis of Melo and Guza consisted 
of two coupled parabolic models of wave propagation, one in the channel and 
another within the porous structure, with matching conditions on the jetty face 
for velocity and pressure. 

The intent of this paper is to develop a new methodology for computing the 
wave field within navigational channels without having to use coupled parabolic 
wave models (as in Melo and Guza) through the use of the impedance boundary 
condition. 

Theory 

The wave motion will be described within the jetty section, assuming that 
the wave height is specified across the mouth of the channel. Figure 1 shows the 
channel and the coordinate system to be used in the analysis. The channel is 
assumed here to be constant in depth, which simplifies the analysis. 

Between the jetties, which are located at y = ±6, the wave motion is assumed 
to be described by linear wave theory which results from the assumption of 
small amplitude irrotational wave motion within an incompressible fluid. The 
associated governing equation is the Laplace equation for a velocity potential 
cj>(x,y,z,t), 

V2<?i = 0 -(7) 

from which the velocities in the fluid can be determined, u = (u,v,w) = —V</>. 
At the bottom boundary, no flow is permitted, 

t . 2b 

Figure 1: Schematic of Channel 
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- ^ = 0 on z=0. (8) 
oz 

At the jetties, an impedance boundary condition is assumed, 

—- = i"/(j) = ik/3(f> on y = \b\ (9) 
dy 

where 7 is k (the wave number) times the specific admittance, /?, of the jetties. 
This assumption follows from acoustics, where it is used to determine the damp- 
ing of acoustic waves due to absorbent duct boundaries (e.g. Morse and Ingard, 
1968, §6.3). If 7 is real, then wave energy is absorbed by the jetties; for 7 purely 
imaginary, this boundary condition leads to 100% reflection with a phase shift. 
The value of 7 (or equivalently the dimensionless j3) will strongly dictate the 
nature of the solution and its value will be specified later. 

The impedance boundary condition on the jetties can be compared to a 
transmitting condition for plane waves, usually imposed on an open coast model 
(e.g., Kirby, 1985), which is taken as 

^• = iksm0(f> (10) 
dy 

where 6 is the angle of the wave direction to the x axis. Comparing to (9), the 
specific admittance for a transmitting boundary is j3 = sin 0, which varies from 
0 to 1. The value of 7 then must be less than the wave number, k, as it implies 
that waves are normally incident on the jetties and fully transmitting through 
them. 

For the general case, an equivalent admittance will be defined as sin0 when 
P is real. 

Eigenfunction Expansion 

The velocity potential in the channel will be similar to that used by Dalrym- 
ple (1989), studying 'designer waves' for directional wavemakers. In general, the 
total potential will consist of even and odd eigenfunction components, across the 
the channel, but here we will restrict ourselves to normally incident wave trains, 
so that only the even modes will be utilized. The potential (in the absence of a 
mean flow in the channel) is therefore assumed to be 

,/ x V^ ^ x COsh£(/l + z)    i(jkl-\lx-at) r      v 
<P(x, y,z,t) = 2^ Cncos\ny— —eVv > (11) 

where the set {cosAnj/} is an anharmonic (orthogonal) Fourier series in y, and 
the usual linear wave theory dispersion relationship holds: 

a2 — gfctanh kh, (12) 
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which relates the wave number k and the water depth and wave angular fre- 
quency, a = 2ir/T, where T is the wave period. 

The lateral boundary conditions (9) place the following contraints on the An 

in the Fourier series, 

— Antan A„fe = 27 n = l,2,... (13) 

which is a transcendental equation to determine the wave numbers An in the 
lateral direction. (Note that if 7 is zero, then the An = mt/b.) This boundary 
condition leads to the orthogonality of the Fourier series: 

/ 
I   0 lor TI ^F- vn 

cos Xny cos Xmy dy = <   2\nb+Sm2\nb    for n = m (I4) 
2A„ 

The velocity potential (11) is composed of an infinite number of wave trains, 
consisting of wave trains which are 'standing' in the cross-channel direction and 
either propagating or decaying in the down-channel direction. In fact, only a few 
terms in <f> represent propagating wave trains as, for large values of n, the real 

part of Jk2 — X\ becomes negative and results in a strongly damped motion in 
the x direction. In fact, for incident wave trains with wave lengths larger than 
26 (the channel width), or kb < it, then only one wave mode (n = 1) propagates 
down the channel (this is strictly true for 7 = 0; but it serves as a guide). 

The values of Cn are determined by the initial value of <f>(Q, y, t). By orthog- 
onality of the set {cos Xny} over — 6 < y < b, we find 

r  - 2Xn $-b ^^^ cos XnV dy nz\ 
2\nb + Sm2Xnb [    ' 

For a given incident wave train of frequency a, <j>(0,y,t) is taken as unity 
across the mouth of the channel, and the Cn can be reduced to 

_       4sinAn6 
n_2An6 + sin2Ari6 

U°j 

This initial condition imposes phases on the various wave modes (more on this 
later). 

Examining narrow channels, (76 << 1) and kb < TT, the lateral boundary 
condition (13) can be approximated for Ai, 

XI = -t7/6 (17) 

The leading term of (j) is 

_ .        CO§h. k(h -\- z)    i(-Jk*-tfx-crt) ,      , 
glC°sAiy     coshM     el } ^ 
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Introducing the approximation for Ai yields for the approximate wave decay 

e~(wk)x = e~^x (19) 

as Ci asymptotically goes to unity. Here, the subscript r denotes the real part. 
Comparing with the linear damping formula, (4), T = jrx/2bk. Therefore, the 
wave height in a channel decreases exponentially down the channel according 
to this theory. Further, the damping is inversely proportional to 6, the channel 
half-width. 

Alternatively, since Aj << k2, the exponential term in x can be approximated 
as 

eiy/k*-\lx _> &ikx e (Xi)r(Xl)iX/k 

Thus, given the real and (negative) imaginary parts of Ai, found from (13), the 
decay of the first wave mode with x can be found as 

,(Ai)r(AiWfc (20) 

Since this expression is based on the lateral boundary condition, rather than an 
approximation, it is more accurate than that provided in (19). 

Effects of Tidal Currents 

The previous results were obtained for the case of no currents in the channel. 
However, it is likely for a majority of the tidal cycle there will be a slowly 
varying flow in the channel or a current due to a river discharge. Therefore the 
effects of the currents on the wave field and the damping in the channel must 
be determined. 

To include the current (with uniform speed U, with U >> |V<^|), the velocity 
potential is changed to 

A( +\        A,    ^A TT      >   \Tn \       C°shkn(h + Z)    iUkl-\lx-at\ 
<f>(x, y, z, t) = <pc + <pw = -Ux + 2^Cn cos \ny ——- e V / 

n~\ n 

(21) 
where the An satisfy the same impedance relationship (9) as before; however, 7 
may be different than for the no-current case. Also, the dispersion relationship 
for the wave number results in a different wave number for each wave mode, due 
to the wave-current interaction, which depends on the wave direction, 

(a - U^Jkl - Af)   = gkntxa\iknh,    n = 1,2,3,... (22) 

due to the effects of the current on the linear combined free surface boundary 
condition (e.g., Dean and Dalrymple, 1991,§  3.4.5) 

d2<f>n, ,nTTd2<i>w . rT292</>w      d(j>w 
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where <j>w is the portion of the velocity potential describing the wave motion. 
The resulting wave numbers (kn, n = 1,2,3,..., oo from 22) are all complex. 

For narrow channels, a similar approximation to (19) can be made for the 
case of waves on currents. This leads to the following relationship for wave 
height decay down a channel (for normal wave incidence) 

e~(vk) x (24) 

where k\ is given by (22). 

Results and Comparisons to Field and Laboratory Data 

Figure 2a shows the instantaneous wave field (i](x,y) = ~(i(r/g)(j>(x,y,0)) 
and the absolute value of rj in a channel with the following characteristics: b = 
120 m, T = 12 s, h = 8 m, and specific admittance is 0.156, which is 7 = 
0.012 m_1. For this case, the curvature of the wave crests is clear with the 
waves turning into the jetties by diffraction. For this example, the equivalent 
transmission angle is 8°. 

The absolute value of the water surface is contoured in Fig. 2b, with the 
contours spaced by 0.1. The initial condition of normally incident waves with 
unit amplitude leads to a forced phasing of all the modes which comprise the 
wave field (11), such that as the waves propagate down the channel there is a 
focussing after two wavelengths, for this wave period (the largest contourline 
corresponds to 1.1; the smallest, to the far right, is 0.3). 

Fig. 3 shows the decay of the absolute magnitude of each of the largest five 
wave modes down the channel centerline for this example; clearly the higher 
modes (greater than, say, the third) decay rapidly (note one wavelength corre- 
sponds to 102 m) and, after long distances, only the first mode is important. 

Melo and Guza (1991b) carried out a field experiment at Mission Bay, CA. 
The entrance channel is 1200 m long, 250 m wide, with a depth of 8 m. The 
jetties are sand tight, prohibiting the propagation of waves through the jetties. 
Pressure sensors were deployed at five locations along the centerline of the jetties 
as shown in Figure 4. Data was obtained during the period March 2 to April 8, 
1985. Using data and parabolic model predictions, Melo and Guza determined 
that the effects of wave height and bottom friction on the wave height reduction 
along the channel were small. There was no wave breaking observed in the 
channel. 

The effects of currents were observed to have only a small effect on the 
damping down the channel. The model given in the section Effects of Tidal 
Currents can predict the damping factor exactly; T is the imaginary part of 

( v^i — ^1 ) •   A variation in U of ±1 m/s had nearly no effect on the value of 

T; the variation was less than 0.3%. 
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Figure 2: (a) Plane View of Instantaneous Water Surface Elevation in Channel; 
Ocean at the Left of Figure, Harbor to Right; (b) Absolute Value of Water 
Surface Elevation, Contours Intervals are 0.1 

Figure 3: Decay of Each Wave Mode Down Channel (at centerline) 
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Figure 4:   Pressure Sensor Locations for Mission Bay Study (from Melo and 
Guza, 1991b) 
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Figure 5: Wave Spectra at the Different Channel Locations (1 April, 1985; 
adapted from Melo and Guza, 1991b) Legend: Upper Solid Line, P2; Dashed 
Line, P3; Dotted Line, P4; Dash-Dot, P5; Lower Solid Line, P6. 
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Figure 6:  Wave Spectra at the Different Channel Locations (28 March, 1985; 
adapted from Melo and Guza, 1991b) 

The wave spectra observed at the five locations in the channel by Melo and 
Guza on April 1, 13:31-14:40 hs, 1985 and March 28, 12:24-13:32 hs, 1985 are 
shown in Figures 5 and 6. Thirty three different frequencies are represented 
from 0.05 Hz to 0.3 Hz (A/ =0.078 Hz). A comparison of this model to the 
field data was undertaken by calculating the wave field associated with each 
of the 33 frequency bands (with unit amplitudes at the channel mouth). The 
energy densities at the first interior gage, P2, were then scaled to match the 
field data at that location. The wave heights at the other 4 gage locations were 
then computed from Eq. 11. These heights were then converted into energy 
densities and plotted. The results for each of the 33 frequency bands are shown 
in Figure 8 for the 1 April case. By best fit matching of the data, a smoothly 
varying impedance was chosen, corresponding to an impedance angle linearly 
varying from 6.3°to 57.3°at the highest frequency (giving 0.004 m_1 > 7 < .04 
m-1, from lowest to the highest frequency). The agreement between model and 
fielld data is reasonably good, giving confidence in the model for low frequencies 
(0.05 to 0.1 Hz; or for a range of dimensionless channel widths, 4 < kb < 9). 

For the spectrum with sea and swell, March 28, the specific admittance was 
taken the same as for the previous case for the 10 lowest frequencies, but the 
higher frequencies could not be computed reasonably. The higher frequency wave 
in the range of 0.15 Hz to 0.30 Hz were predicted to grow down the channel. 
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Figure 7: Computed Wave Spectra at the Different Channel Locations, April 1. 

The reason for this 'growth' is the location of the focussing region shown in 
Fig. 2b. For the higher frequencies, this focussing region migrates down the 
channel, giving an apparent amplification, which is not seen in the field data. 
These waves (roughly 14 < kb < 44) are seriously affected by the phases imposed 
by the initial condition. For the lower frequency waves this was not a problem 
as the focussing occurred before any of the measurement points. For a realistic 
case, the phasing of the wave modes will be far different. In Fig. 8, 7 was taken 
somewhat arbitrarily taken as 0.007 (1 — i) for the higher frequencies, as it was 
found by trial and error that the use of a complex value would reduce the amount 
of focussing. 

As an alternative and a simpler approach to this problem., a pure exponential 
decay (according to Eq. 19) was tried. The wave energy density at P2 was 
multiplied by 

e~(tok> x = e" x (25) 

where the introduction of the 2 comes about by the energy being proportional 
to the square of the wave height. Using the specific admittance (/J) of 0.139 
(apparent angle of 8°and 7 = k/3 ranging from 0.005 m_1 for the low frequency 
waves to .05 m-1 for the highest frequency) for April 1 and 0.190 (apparent 
angle of 11°) for March 28, gives the results in Figs. 9 and 10. For the case of 
the narrow banded sea state, there is almost no difference between the complete 
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Figure 8: Computed Wave Spectra at the Different Channel Locations, March 

model (Fig. 7) and the exponentially decaying model. For the wide-banded seas, 
the frequency dependency of 7 causes the low frequencies to decay too rapidly 
when compared to the field data. This can of course be improved by varying 7 in 
the model. The exponential model result here is better than the complete model 
shown in Fig. 8, because only a single wave mode is used and the focussing can 
not occur. 

Conclusions 

The behavior of water waves in straight channels with energy absorbing side 
walls, such as rubble mound jetties, can be reasonably predicted with a simple 
eigenfunction expansion model. For the case of Mission Bay, CA, only a very 
few wave modes are needed to provide an adequate description of the wave 
field, except for the case of the high frequencies. The absorbing sidewalls are 
modelled by a simple impedance boundary condition (Eq. 10), where the specific 
admittance j3 can be expressed as an equivalent transmission angle, theta from 
(3 = sin 9. The values of 6 found here are between 8 and 11°. 

The complete model predicts the decay of wave spectra at Mission Bay, CA 
reasonably well for the low frequencies, with problems associated with focussing 
and the phasing of the initial condition at the higher frequencies. A simple 
model based on purely exponential decay (Eqs. 19 and 20) provides a useful tool 
for preliminary estimates of wave decay. 
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Figure 9: Exponentially Decaying Spectra at the Different Channel Locations; 
April 1. 

0.15 0.2 
Frequency (Hz) 

Figure 10: Exponentially Decaying Spectra at the Different Channel Locations; 
March 28. 
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