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Theoretical Study of the Wave Attenuation 
in a Channel with Roughened Sides 

A.J. Roldan. * M.A. Losada*, I.J. Losada* 

Abstract 

An eigenfunction expansion method is used to analyze the propagation 
of a plane wave train along a rectangular channel, the side walls which 
are provided with regularly spaced thin vertical strips. The presence of 
such strips may produce cross-channel seiching and energy dissipation. 
The method is extended to take into account the dissipation of energy at 
each pair of strips. Analytical solutions are obtained for the general case. 
Theoretical results of wave attenuation along the channel are compared 
to laboratory experiments, Battjes (1965). 

1    INTRODUCTION 

A harbor is a partially enclosed area connected to the sea by an opening. 
Sometimes the connection to the sea is through a channel of finite width and 
length. Entrance channels bounded by rubble-mound jetties are a common way 
to control wave propagation along the channel and to the harbor. Others, are 
channels with roughened sides, Battjes (1965) or with corrugated boundaries, 
Liu (1987). Further references can be found in Liu (1987). 

Battjes (1965), did a semiempirical study of the attenuation of water waves 
in a rectangular channel, the side walls of which had been provided with 
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regularly spaced roughness strips. Such strips were found to be highly ef- 
fective wave dampers. However, the damping effectiveness of the strip sharply 
decreases when resonance occurs in the space between the strips. 

In this paper the eigenfunction expansion method (hereafter called EFEM) 
is used to analyze the propagation of a plane wave train down a channel 
provided with thin vertical strips, regularly spaced. The wave solutions are 
expanded in eigenfunctions over the channel width. Dalrymple and Martin 
(1991), examined periodically spaced offshore breakwaters, matching eigen- 
function expansions at the downwave and upwave side to show that a single 
incident wave train can generate directional wave trains downwave of the open- 
ings. Losada et al. (1992), used a two-dimensional (over the depth and across 
the channel cross-section) EFEM to analyze the generation and propagation of 
linear water waves down a wave flume, consisting of a wavemaker, an abrupt 
expansion, a breakwater and a fully absorbing ending wall. The EFEM method 
allowed the proper description of the wave motion, including cross-channel se- 
iching as well as the prediction of the reflection and transmission which occurs 
at the channel junction and the porous structure. In order to evaluate the 
wave attenuation along the channel under seiching regime, (frictionless case), 
and energy loss regime, (friction case), an EFEM is used, providing match- 
ing conditions at each pair of strips which take into account a loss of kinetic 
energy. 

2    FORMULATION OF THE PROBLEM 

Figure 1 shows a rectangular channel. 
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The channel is symmetric about its centerline with constant depth h, the 
side walls of which are provided with regularly spaced strips attached vertically 
to them and extended as flat, thin (theoretically infinitesimal) plates into the 
channel. 

The cross sectional width of the channel is 26. The gap between aligned 
pairs of strips is 21 and the distance between two consecutive pairs of strips is 
denoted by s. The channel has TV pairs of strips at the centerline of the channel 
at the still water level, with z directed upwards and x pointing downwave. 
Region 1 is defined by x < 0. Between two consecutive strips a new region is 
defined. A total of TV — 1 regions are defined. Region TV + 1 is extended over 
x> (TV -1)5. 

The waves propagate down the channel in the positive direction. Then, 
as they encounter the first row of strips they get scattered by the roughness 
elements, partially reflected, and partially transmitted into Region 2. The 
transmitted waves in Region 2 diffract into the wider channel, dissipating 
energy through the formation of vortices, jets and eddy zones and reflecting 
from the side walls. They are then partially reflected and partially transmitted 
and dissipated after encountering the next row of strips. The transmitted 
and reflected waves are subsequently scattered and dissipated back and forth 
between the succesive rows of strips until they encounter Region N+l where 
they are partially reflected, dissipated and transmitted into the leeward semi- 
infinite fluid region. As the waves propagate down the channel, they decrease 
in magnitude. 

For an incompressible fluid and irrotational motion, the wave field outside 
the strip regions can be specified by the velocity potentials: <j>\ in Region 1 
and <I>N+I 

m the leaward region. The linear boundary value problem for water 
of constant depth, ft in a channel of width 26, is well known. In the regions 
enclosed by strips it is assumed that the wave field is also describable by a 
velocity potential, <j)n, with 2 < n < TV. Since the solution in the adjacent 
regions must be continuous at each interface, continuity of mass flux and pres- 
sure must be required over the water column and across the channel width. 
Then, following Mei et al. (1974), it is possible to incorporate to the pressure 
matching condition a head drop consisting of a loss of kinetic energy due to 
flow separation and an apparent inertia. 

The boundary value problem can be completely solved if the potential, 
<j>j(x,y,z,t), in the jth region, is known for j = 1,2,..,TV+1. For each constant 
depth region, the Laplace's equation and the non-flow boundary conditions at 
the bottom and at the vertical channel boundaries are assumed to hold. The 
potentials in each region can be separated as: 



CHANNEL WAVE ATTENUATION 2789 

*j{x,y,z,t) = »[*(*,»)!,(*)**"] (2.1) 

where 

l   ^ igcoshk(z + h) 
3        a      cosh kh 

where g is the gravitational constant, T is the wave period, t stands for 
time and a = 2TT/T, is the wave frequency. The wave number in each region, 
kj, satisfies, for any j = 1,2, ...,iV + 1, the linear dispersion relationship 

Tj = — = kjht&nhkjh (2.3) 

Because of the constant depth in all regions, eq. (2.3) has real roots kji, 
where kji > 0 and has an infinite number of purely imaginary roots, fcjm, with 
m> 1. 

The potentials <j>j must solve the following problem 

S + ^ + ^=:0 -^**° (2-4) 

^P- = 0 z = -k (2.5) 
dz 

f-^. = 0 z =  0 (2.6) 

Every potential has to satisfy a non-flow condition across the boundaries 
given by 

Finally, it is assumed that the downwave end of the channel, Region N+l, 
is fully absorbent. To take into account this absorbing character, it is enough 
to specify a radiation condition, requiring that the potential in that region is 
a downstream progressive wave. 
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2.1    Matching Conditions 

Since the solution in adjacent regions must be continuous at each interface, 
continuity of mass flux and pressure must be required over the water column 
and across the channel width. 

Frictionless Case 

At the strips, the matching conditions for the frictionless case are 

[4>j)x = {4>j+i)x =0 at  x = (j - l)s       and I <| y |< 6       (2.8) 

OW* = (0>'+i)* at   x = (j - l)s and    \ y \< I (2.9) 

4>j — <f>j+i = 0 at  x = (j — l)s and    \ y \< I        (2.10) 

for j = l,2,....,JV + l 

which guarantee the non-flow condition through the strips and the conti- 
nuity of mass flux and pressure in the gap. 

Friction Case 

Based on a model of quadratic loss and scattering of long waves Mei, Liu 
and Ippen, (1974), Losada (1991), proposed a similar model to apply for the 
case of wave scattering by thin vertical barriers. In this model the continuity of 
pressure at the interface is obtained based on the Bernouilli equation. Thus, 
the analytical solution satisfies the following matching conditions (2.8) and 
(2.9), and a new condition given by, 

±{4>i - 4>i+l) = {-g{<t>i+i)x | fo,-+i), | +7(fc+iW = U - !)s   and  \y\^1  (2-n) 

forj = l,2,....,iV + l 

where, / and L are two empirical coefficients related to the loss of kinetic 
energy and apparent inertia respectively at each pair of strips. Following Mei 
(1974), we will use the following expression for f: f = [(2b/c.2l) — l]2, with 
c = 0.62 + 0.38(//6)3. 

The good agreement between the analytical and experimental solutions for 
the case of thin vertical plates, suggests the extension of the model to the multi- 
strips case. Losada (1991), showed that the proposed approximation gives the 
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best results for the intermediate and shallow water waves. Furthermore, he 
showed that for relatively long waves, the apparent inertia term is not too 
important in comparison to the friction term. In this paper only the friction 
term will be considered. Moreover, eq. (2.11) will be linearized, therefore 

<t>j - 4>}+l  -    Cej{<t>j+l)X (2-12) 

where Cej is an equivalent friction term. Following Mei (1974), 

Cej = L±\*k\ (2.13) 
e}       2g 3TT '  dx ' y       ' 

which depends on the potential value at each gap and it is not known before 
the solution is completed. To solve the problem an iterative procedure has to 
be used. 

3    FULL SOLUTION 

The potentials <j>j for the frictionless and friction cases in each region satisfy 
the same boundary value problem, and therefore have the same analytical ex- 
pression. They differ only in the matching conditions, that is, in the numerical 
value of the coefficients. Because of the constant water depth along the channel 
the potential (j>j(x,y) at each region is 

M*,V) = EI4V"" + flW^-JcosfnAy) (3.1) 
n=0 

4>i{x, V) = E[^)e~'«"(*~y-,)*) + BWW-W-1)')] cos(rcAy)      (3.2) 
n=0 

<j>N+1(x,y) = £[4"+1)e-',',(M"-1)s)]cos(nA!/) (3.3) 
n=0 

where qn = Jk2 — (n\)2, A = jr/6. 

The inclusion of the Fourier terms, cos(nAy), n = 1,2,.., oo for all velocity 
potentials assures no flow through the channel walls. There is an infinite 
number of eigenvalues, A„ = nX. The corresponding eigenfunctions form a 
complete orthogonal set in the domain (—6 < 6). 

The wave field at each region consists of the incident plane wave train 
propagating down the channel and the reflected plane wave trains, which are 
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independent of the y coordinate (n = 0) plus progressive and evanescent stand- 
ing waves travelling in the negative x direction. The evanescent modes occur 
when A„ > k, leading to a dampened motion in the x direction. The pro- 
gressive standing wave modes consist of two intersecting wave trains travelling 
at 

^JV-inXf 
0 = C0B-i( v _^_) (3-4) 

to the x axis. 

Note that eqs. (3.1) to (3.3) do not include a family of vertical evanescent 
modes, which has to be included to satisfy the matching conditions at each 
interface. However, for intermediate and shallow water waves, the relative 
error between the plane wave approximation and the full solution is small. 

The unknowns of the problem are A^J} and B$, with m = 0,1,2,..., n and 
j = 1,2, ....,N + 1. The incident plane wave train is defined by Aft — 1 and 
A^} — 0, with m > 1. In order to satisfy the radiation condition in the leeward 
region, #^+1) = 0, with m > 0. 

Substituting the expression of the potentials into the mass flux condition, 
eq. (2.9), an expression from B$ as a function of .4$ can be found. 

Next, the two remaining matching conditions are to be prescribed on the 
velocity eq. (2.8) (non-flow through the strips) and on the pressure eq.(2.10) 
or on the momentum eq. (2.11). Here, a mixed boundary condition must be 
prescribed (Dalrymple and Martin, 1991, and Losada et al., 1991). 

3.1    Dual Series 

The two remaining matching conditions to be satisfied at the gap are known as 
dual series relations, (Sneddon, 1966). They have to be solved for the values of 
the coefficients A$. The two conditions can be combined to make one mixed 
boundary condition. This condition is 

G(y) =0 at  0 <| y \< b (3.5) 

To determine the A\p several techniques can be used, e.g.   least squares 
method, which requires the value of 

f I G(y) |2 .dy (3.6) 
J —b 
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to be a minimum. 

Minimizing this integral with respect to each of the A%> leads to the fol- 
lowing system of equations 

j = 1,2,3,...., JV (3.7) 

where G* is the complex conjugate of G and G1 and G2 are the matching 
conditions at the gap and at the strip respectively. Truncating eq. (3.7) to 
M terms and solving for the M * N values of A$ simultaneously, a complex 
system of M * N * N matrix equations is obtained which can be solved with 
the IMSL routine, LEQT1C. 

Dual Series for the Frictionless Case 

Taking into account the non-flow condition at each pair of strips, eq. (2.8), 
and matching the pressure using eq. (2.10), we get the mixed matching con- 
dition G(y) = Gi(y) + G2(y), which for each j = 1,2,3, ,N, is 

oo 

n=Q 

+ {4lmn + 2\iqn(6e-**" - l)],[.ffm(*«-M»- - l)}Jmn}A*^ 

+ 2  £  Siiq^ie-2^' - l)*(e-*«»("-^1»s)*[4-gm(<Se-
2*""s - 1)] Jmn}A*W 

- 26(iqny(e-
t*>llt-fiy[iqm(6t-*-' - 1)] Jm„}^(JV+I) - 0 (3.8) 

where £ = 0, if j = N and 6 = 1 otherwise, and Imn = f_t cos{n\y) cos(mXy)dy, 
and Jmn = Jj4 cos(nXy) cos(mXy)dy. 

Dual Series for the Frictional Case 

The non-flow condition at each strip is the same as for the frictionless case. 
The continuity of pressure, eq. (2.10) can now be written as: 

oo 

GW(y) = £{2e-a,WW 
n=0 

-[2-C>„(*e-*«-'-l)liiy+1J 
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+   £  C'ejiqn6{e-2<*»° - ll^'I'-l'+'D'AW 
p=j+2 

-C'^qJe-^-^A^ycosinXy) = 0 (3.9) 

where C'tj = -(ig/(j)/Cej 

Substituting eqs. (3.9) and the corresponding G^(y) into eq. (3.7) and 
truncating the series to M terms, we get a set of M*N*N matrix equations 
that can be easily solved. 

4    THEORETICAL RESULTS 

The reflection coefficient, Cr, is denned as the absolute value of the most 
progressive coefficient B^ of the reflected potential in Region 1. Similarly, 
the transmission coefficient, Q, is defined as the absolute value of the most 
progressive coefficient, A^+1', of the transmitted potential in Region N + 1. 

For the frictionless case, the propagation of a wave train down a channel in 
two separate cases, one using two pairs of strips and the second using ten pairs 
of strips, is examined for the following characteristics: T = 1.373s, h = 0.6m, 
26 = 3.0m and2Z = 2.6m. 

Figure 2 shows Cr versus ks where,fc is the wavenumber. Resonant condi- 
tions occur at ks = p%, p = 1,2,... Further results have shown, that increasing 
the gap to 11 = 2.8m, the amplitude of the resonance is reduced. 
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Fig.2.- Reflection Coefficient versus k.s (without friction) 
(T=1.373 s, 2.b=3.0 m, 2.1=2.6 m, h=0.6 m, M=10) 
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Note, that the resonant conditions are stronger for the channel with a larger 
number of strips. 

Figure 3 shows the dependency on Cr on the relative gap width l/b. This 
time the separation of the strips is s = 0.4. A sharp increase in Cr occurs, by 
decreasing the relative gap from 70% to a 60%. 
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Fig.3.- Reflection Coefficient versus l/b (without friction) 

(T=1.373 s, 2.b=3.0 m, s=0.4 m, h=0.6 m, M=10) 

Battjes, (1965) reported experimental values of the wave attenuation in a 
channel with roughened sides. The wave height was measured in eight equidis- 
tant points in each cross-section and the average of these heights was taken to 
represent the wave attenuation at each respective section. 

Results without friction have shown that the analytical model underpre- 
dicts the wave attenuation measured in the experiments. Further, the am- 
plitude attenuation depends linearly on x. A similar behavior is obtained if 
the friction coefficient is kept constant along the channel, as Battjes, (1965) 
suggested. 

Figure 4 shows the evolution of the averaged wave height along a channel, 
including the friction effect, for the following case: h = 0.6m, T = 1.98s, 
2/ = 2.9m, s = .2m, N = 195 strips and M = 5. 
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This time the overall agreement between analytical and experimental re- 

sults is good. 

Because of time computation, theoretical results were stopped after 195 

strips. 
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Fig.4.- Wave Height Evolution (T=1.98 s, 2.b=3.0 m, 
2.1=2.9 m, s=0.2 m, h=0.6 m, N=195, M=5) 

The wave height contourlines for, h = 0.6m, T = 1.373s, 2/ = 2.6m, 
26 = 3.0m, s = 0.67m, N — 20 and M = 25 are presented in Figure 5. In this 
case the wave height varies from the input wave height, \m to 0.3m. 
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Further analysis has shown, for the same values of the parameters, that 
the wave height attenuation in a mid-channel section presents an oscillating 
behavior, due to the resonant conditions caused by the strips. 

Finally, it could be also observed that there is also an oscillating behavior 
present, if we the wave height variations across the channel were analyzed in 
different sections. 

5    CONCLUSIONS 

Wave propagation in a channel with roughened sides has been studied, using 
an eigenfunction expansion method (EFEM). 

This method is valid to reproduce the wave field in the channel, showing, 
as the most important characteristic, the wave attenuation with an oscillating 
behavior. 

The model does also reproduce the resonant conditions and the cross- 
channel variations, due to the presence of the lateral walls and the thin strips. 

Frictional effects have been considered using a semi-empirical approach 
based on Mei et al. (1974). This effect is included in the matching conditions 
corresponding to the momentum equation at each strip. By applying the 
EFEM, the local friction effect proposed by Mei et al. is extended to the 
whole channel width and depth. 

Comparison of the analytical results with the experimental data by Battjes 
(1965), proves the validity of the method. 
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