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INTRODUCTION 
The presence of densely growing vegetation has been observed to result 

in wave damping and shoreline sediment deposition. Submerged or flooded 
vegetation, seaweed stands, reed stands and mangrove forests act as a buffer 
zone against wave attack on the rear beaches. Recently, a new method for 
shoreline protection by use of artificial seaweed has been at tempted (Rogers 
f986; Jenkins and Skelly 1987). 

Besides the function of shoreline protection, these vegetated areas play 
an important role in estuarine and nearshore ecosystems. Since the hydrody- 
namic process is one of the most important governing factors of the ecosys- 
tems, the interaction between water waves and vegetation needs to be quan- 
tified. Furthermore, the need of improved understanding of this mechanisms 
may increase since accelerated sea level rise may result in more flooding in 
vegetated areas(ASCE Task Committee 1992) 

One of the authors initiated a study by conducting experiments on wave 
damping using artificial seaweed(Asano et al. 1988). Recently, an analytical 
model was developed to describe the vertically two-dimensional problem of 
small amplitude waves propagating over submerged or subaerial vegetation 
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Figure 1: Definition sketch of two layer model 

(Kobayashi, Reichle and Asano 1992).  This analytical model is referred to 
as the previous model in this paper. 

In the previous model, the effect of vegetation on the flow field was as- 
sumed to be expressible in terms of the drag resistance against the fluid 
motion, whereas the decrease in the drag resistance due to the swaying mo- 
tion of vegetation was neglected. An analytical solution was obtained for 
the monochromatic waves whose height decayed exponentially. The com- 
parisons with the artificial seaweed experiments yielded the calibrated drag 
coefficients CD varying in a wide range and affected by the vegetation mo- 
tion. The calibrated values of Cp were on the order of 0.1 for the tests with 
swaying vegetation. A greater value of Co would have been resulted if the 
relative velocity between the fluid and vegetation motion had been used for 
the drag resistance. 

The present paper extends the previous model by including the interaction 
between the wave and vegetation motion. The present model consists of 
analyses for the flow field and the swaying motion of an individual vegetation 
stand. Both solutions are connected by a linearized damping coefficient D 
which is determined iteratively. The interaction effects are hence included 
in the converged solution. The calculated results are compared with the 
artificial seaweed experiments. The measured wave attenuation is reproduced 
well by the extended model using a drag coefficient of the order of unity. 

2. SOLUTION FOR FLOW FIELD 
A two-layer model consisting of an upper fluid layer of depth h, and a 

lower fluid layer of depth d, is shown in Fig. 1. The depth d of the lower layer 
is the mean height of swaying vegetation and is less than the vegetation length 



2712 COASTAL ENGINEERING 1992 

l0. In this linearized analysis, small-amplitude monochromatic waves are 
assumed to propagate in the positive direction of the horizontal coordinate 
x and be attenuated by the vegetation. The vertical coordinate z is taken to 
be positive upward with z — 0 at the still water level (SWL). Viscous shear 
stresses acting on the interface and the bottom are neglected because the drag 
resistance of the vegetation is predominant for most practical applications. 

The linearized momentum equations in the upper and lower layers, which 
are indicated by the subscripts 1 and 2, respectively, may be expressed as 

diii 1 

ir = -pVpi (1) 

<9u2 

~~dt 
1^ -Vps- -IF 
p P 

(2) 

in which, t = time; u — (u, w) = water particle velocity vector; p = fluid 
density; and p = dynamic water pressure due to waves. 

The drag force vector per unit volume, F, in (2) is assumed to be given 

by 

Fx = \pCzibNur | ur |, 

Fz = 0 (3) 

in which Co = drag coefficient; b = area per unit height of each vegetation 
stand normal to the horizontal velocity; N = number of vegetation stands 
per unit horizontal area; and uT = (u2 — uv) is the relative velocity between 
the horizontal fluid velocity M2 and the swaying velocity of vegetation, uv. 
The drag force is assumed to be dominant and the inertia force is neglected 
in (3). 

In order to derive an analytical solution, (3) is linearized as follows: 

-pCDbNuT | ur |= pDu2 (4) 

The damping coefficient D is determined in such a way that the mean square 
of the error, E?, of the difference between both sides of (4) is the minimum. 
The condition of dEf/dD = 0 gives 

.              /          ur | ur | u2 dz 

D = -CDbN     (h+d]_h =  (5) 

I (h+d) 
u2dz 

The unknown coefficient D depends on u2 and ur and will be determined by 
iterations using the solutions for u2 and uv as will be explained later. 
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Eq.(2) can then be linearized as 

du2 1 dp2 

"»r = —"«—Du2> ot p ox 

dw2 1 dp2 

-W^-'P^T (6) 

The momentum equations (1) and (6) as well as the continuity equations for 
both upper and lower layers are subject to the following linearized boundary 
conditions at the free surface, interface and bottom boundaries: 

pi = pgm    at z = o, 

dm 
Pi = P2,        at   z = -h, 

w2 = 0 at  z = —(h + d) (?) 

where r\\ = free surface elevation above SWL; rj2 = displacement of the 
interface; and g = gravitational acceleration. 

In the following, 771 is assumed to be expressible in a sinusoidal form with 
a complex wave number k = (kr + ik,) as follows: 

?7i = a0exp{i(kx — at)} (8) 

in which, i2 = —1; a0 = wave amplitude at x=0; and a = angular frequency. 
From the real part of (8), the local wave amplitude is found to decay expo- 
nentially 

a = a0exp(—k,x) (9) 

where k, = exponential decay coefficient. 
The solutions for the horizontal fluid velocities u\ and u2 can be shown 

to be given by 

«i = {cosh(A:z) H—-sinh(A:;?)} exp{i(kx — at)} (10) 
a gk 

ga2aQ        •.,,,•.      o2   .•.,,,•,-, cosh[a(z + h + M        . ., . , 
u2 = —^cosh(Kft) -smh(kh)\ —:— -exp\t(kx — at)\ 

ak gk cosh(ad) 
(11) 

with 
a = k/yjl + i(D/a) (12) 

Substituting (10) and (11) into (1) and (6) yields the solutions for the pres- 
sures pi and p2 

pa 
Pi = -r-«i 

p(a + iD) ,    N 
P2 = ^-r >-u2 (13) 
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The continuity equations together with (10) and (11) yield the solutions for 
the vertical fluid velocities Wj and iu2, which are omitted herein. 

Furthermore, the vertical displacement of the interface, rfe, is given by 

r/2 = a0[cosh(A;/i)  smh(kh)] exp{i(kx — at)} (14) 

Lastly, the dispersion relation is given by 

2 k tanh(kh) + atanh(ad) 
u   = gk-, T7—;r , ,, ,. (15) 

k + a tanh(ad) tanh(fcn) 

Eq. (15) can be solved to find the unknown complex wave number k for given 
a, h, d, g and D. 

In the case of weak damping a >• D, (15) can be expressed more explicitly. 
Eq.(12) is simplified as 

a ~ k{l - i-)1'2 ~ k(l - i—) (16) 

Since a = [fc(l - ie) + 0(e2)] with e = D/2a, (15) becomes 

a2 = gkta,nh[k(h + d)] 
. 2kd + sinh(2kd) 

1 — K- (17) 
sinh[2A:(/i + d)] . 

The real and imaginary parts of (17) yield the following equations 

a2 = gkT ta,nh[kr(h + d)] (18) 

ki 2krd + sinh(2krd) . 

K = e 2kT{h + d) + sinh[2kr{h + d)} (    ) 

Eq.(18) is the ordinal dispersion relation for small-amplitude water waves, so 
the presence of vegetation does not change the real wave number kr as long 
ase= (D/2a) is much smaller than unity. On the other hand, (19) implies 
that ki/kr = O(e) 

The above analytical solution for the flow field is the same as that obtained 
by Kobayashi et al. (1992) except that D was given by (5) with ur = (u2 — uv) 
replaced by u2. 

3. SOLUTION FOR VEGETATION MOTION 
The behaviour of a vegetation colony under wave action is complex be- 

cause the vegetation and fluid motions may generate turbulence stresses along 
the interfacial boundary and among the vegetation stands. However, it is ob- 
served that each stand does not move in random but a group of stands sway 
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(z+h+d) 

Figure 2: Model of vegetation motion 

in an organized manner. As long as the vegetation motion is not so large, it 
may be treated as a horizontal swaying motion as shown in Fig.2. 

As a first attempt, the vegetation motion due to wave action is simply 
modelled as a forced vibration with one degree of freedom. The buoyancy 
and stiffness of the vegetation material are considered as the restoring forces 
of the vibration. The horizontal displacement of a vegetation stand from the 
vertical z-axis is denoted by £, while the differentiations with respect to t 
and z are indicated by the over dot and the subscript z, respectively. The 
equation of the motion for each stand may be expressed as follows: 

Pvbit+Crf + EIZ,, 

+P(CM - l)bt(u2 

z =  \pCDb | «2 - k |  ("2 - 0 

• i) + pbiu2 - (p - pv)gbt£,z (20) 

in which pv,b,t, EI,C1 and CM are the density, width, thickness, bending 
stiffness, attenuation constant, inertia coefficient of the vegetation strip , re- 
spectively. It is noted that £ = uv and ur — (u2 — £) in (5). The inertia force 
is included on the right hand side of (20) for completedness, although it is 
neglected in (3). Assuming that C\ — 0, (£/w) <C 1 and £ may be approxi- 
mated by £ = {{z + h + d)/d}( with ( being the horizontal displacement at 
the top of the vegetation strip, (20) may be simplified as follows: 

\{p{CM - 1) +Pv}V(+ \PCD \u\A(+ {^L-i-(p-Pv)g^}( 

- \pCDAu | u | +pCMVii 

in which A = bd and V = bdt. In the derivation of (21), it is assumed 

-d 

I. EI£zzzzdz = ——( 
-(h+d) dA 

(21) 

(22) 
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which is the relation for the displacement at the top of a cantilever under 
uniform loading. In addition, u, u and | u | u in (21) should be taken as the 
depth-averaged values of u2, u2 and | u2 | u2 in the region —h > z > —(h + d). 

4. WAVE DAMPING CHARACTERISTICS 
(1)Interaction Between Fluid and Vegetation Motion 

In this analytical model, wave damping due to vegetation is described by 
the imaginary wave number k, as expressed in (9). The linearized damping 
coefficient D governs the magnitude of k, through the term e in (19). On 
the other hand, the motion of vegetation is determined by (21) if the fluid 
velocity M2 of the waves is known. The interaction effect between the wave 
and vegetation is expressed through the damping coefficient D which is iter- 
atively calculated by (5) using the relative velocity ur between the wave and 
vegetaion motion. 

The height of the lower layer, d, is determined by the following approxi- 
mate relation based on the length of vegetation, /0, and the amplitude of £, 
denoted by £ ^___ 

,-<Ltf3 <») 
which implies that d decreases from d = IQ as £ is increased from £ = 0. 

The calculation proceeds in the following order: 
(i) Starting from the condition of no vegetation motion, for which uv = 0 
and d = l0, the fluid velocity and complex wave number are calculated, 
(ii) The motion of vegetation is then computed using (21) where the swaying 
velocity u„ is calculated at every vertical point over a whole wave period, 
(iii) The damping coefficient D is determined by (5) using the relative velocity 
uT = (u — u„). 
(iv) The depth of the lower layer is calculated by (23). 
(v) The fluid velocity and complex wave number are re-calculated using the 
obtained damping coefficient D. 
(vi) The computation is repeated until the convergence of the solution is 
achieved. 

(2) Calculated Results 
The final expression of the vegetation motion given by (21) has many 

parameters. Although a sensitivity analysis on the wave dacay coefficient 
ki and the wave celerity c = a /kr may be made using the non-dimensional 
parameters, the variations of ki and c are herein illustrated using the dimen- 
sional parameters whose ranges are related to the artificial seaweed experi- 
ment. In the following computations, use is made of h = 27cm, /0 = 25cm, 
N = 0.149cm-2, CM = 2.0, b = 5.2cm, E = 9.8* 107g/(cm.sec2), I = b?/12. 
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Figure 3: Computed wave dacay coefficient &,• 
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Figure 4: Computed wave celerity c 

Fig. 3 (a),(b),(c) shows the variations of fc; with respect to the frequency 
(CT/27T) for different values of Co, a0 and t, respectively. The wave decay 
coefficient fc; increases with the drag coefficient CD as well as with the wave 
amplitude a0. The dependence of ki on the wave amplitude results from the 
quadratic drag resistance used to estimate D in (5). Meanwhile, the increase 
of t results in the increase of the moment of inertia /, however, the stiffness 
of the vegetation material changes the wave decay coefficient very little. The 
change of the specific gravity s of the vegetation material, which modifies 
the restoring force by buoyancy, does not affect the decay coefficient much, 
although the computed results are not presented here. 

On the other hand, the wave celerity c varies very little with the drag 
coefficient Co as shown in Fig. 4. The other parameters a0,t, and s are also 
found to have negligible effects on c. 

5. COMPARISON WITH EXPERIMENT 
(l)Wave Damping Experiment by Using Artificial Seaweed 

The extended model is compared with the artificial seaweed experiment 
conducted by Asano et al.(1988). The experiment was performed in a wave 
tank which was 27m long, 0.5m wide and 0.7m high as shown in Fig. 5. The 
model seaweed was made of polypropylene strips whose specific gravity was 
0.9. The length, width and thickness of each strip was l0 = 25cm, b = 5.2cm 
and t = 0.03mm, respectively. Each strip was bound to a heavy wire netting 
such that the strip was normal to the side walls of the tank and could bend 
with little torsion under the action of monochromatic waves generated in the 
tank. The number of strips placed uniformly over the area of 4 m2 was 4400 
and 5960. Correspondingly, the number of strips per unit horizontal area 
was N=0.110 and 0.149 cm~2. The water depth above the vertical strips was 
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Figure 5: Experimental setup 
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Figure 6: Measured wave amplitudes fitted to exponential decay model 

h = 20 and 27cm. In total, sixty test runs were performed. 

Six capacitance wave gauges were used to measure the free surface oscil- 
lations. Excluding the data from the two gauges at both ends, the data from 
the remaining four gauges were used in the data analysis because this wave 
damping model does not account for the presence of lateral boundaries. The 
location of the second gauge in Fig.5 was taken herein to be the location x=0 
and the analysis domain was 0 < x < 6 m. 

A regression analysis based on the method of least squares was performed 
using (9) in which the exponential decay of the local wave amplitude a is 
characterized by the initial amplitude a0 at x = 0 and the exponential decay 
coefficient k,. Fig. 6 shows the measured values of a at x=0, 2, 4 and 6m for 
the 60 runs, normalized as a/a0 as a function of kix where the fitted values 
of a0 and k, are used for each run. 
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(2) RESULTS AND DISCUSSION 

The comparisons on the decay coefficient k, are shown in Fig. 7, where 
the circles indicate the measured values. The experimental results are shown 
separately for the large wave runs (a0 = 4.5 ~ 6.0cm) and for the small 
wave runs (a0 = 2.8 ~ 4.2cm), while the computed results are based on the 
average wave amplitude; a0=5.25cm for the former and a0=3.50cm for the 
latter. 

The previous model of Kobayashi et al.(1992) reproduced the measured 
wave decay coefficients only when the drag coefficient Co of the order 0.1 was 
used for the swaying vegetation. The present model including the swaying 
motion of the vegetation is shown to yield much better agreement with the 
same data set, using a more realistic value of the drag coefficient of approx- 
imately 0.5. 

Fig. 8 shows the comparison between the measured and calculated values 
of the wave celerity c. Slight overestimation of c by the present model is 
apparent for low frequency waves. The agreement with the measured celerity 
becomes slightly worse when the swaying motion of vegetation is considered. 

Besides the wave damping measurements, the horizontal displacements of 
the top of the vegetation strip under waves were measured. Fig. 9 shows the 
measured data points in comparison with the computed curves. As the wave 
frequency / decreases, the present model tends to overpredict the displace- 
ment (. 

Judging from Figs. 8 and 9, the limitations of the present model seems 
to arise when the swaying motion becomes large. It was observed for low 
frequency waves that the vegetation swayed considerably and may have gen- 
erated turbulence along the interface and among the vegetation strips. The 
present model,however, does not account for the turbulent stress. The mod- 
eling of the swaying vegetation is so simple that the complex large swaying 
motion could not be reproduced very accurately. The drag resistance of the 
vegetation may no longer be expressible by (3) which neglects the vertical 
component of the drag resistance. 

Although the drag coefficient Co is herein taken to be 0.5 as the best value 
for the measured decay coefficients, Co should be a function of Reynolds 
number defined by the relative velocity and vegetation size. In addition, the 
proximity effects of surrounding strips on Co should be examined because 
natural vegetation usually grows densely as a colony. 

6. CONCLUSIONS 

The present paper has presented an analytical solution for water waves 
propagating over submerged vegetation and a mathematical expression for 
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Figure 7: Comparisons between measured and computed decay coefficient k, 
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Figure 8: Comparisons between measured and computed wave celerity 
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Figure 9: Comparisons between measured and computed horizontal displace- 
ment of top of vegetation strip 
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vegetation motion swayed by the water waves. Both solutions have been 
linked by the linearized damping coefficient D through which the interaction 
effects between the water waves and vegetation motion have been accounted 
for. The properties of the wave decay coefficient and wave celerity have been 
examined by performing a sensitivity analysis. 

The present model has been compared with the artificial seaweed exper- 
iment. The drag coefficient Co has been calibrated using the exponential 
decay coefficient fitted for each run. The calibrated values have been found 
to be approximately 0.5 which is greater than the values of the order 0.1 
obtained by the previous model which neglected the vegetation motion. The 
drag coefficient of about 0.5 appears to be more realistic. Although the 
present model is valid only when the swaying motion is not large, the capa- 
bility for predicting the wave decay has been improved herein by including 
the vegetation motion in the model. 
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