
CHAPTER 203 

LONGSHORE CURRENT INSTABILITIES: 
GROWTH TO FINITE AMPLITUDE. 

Nicholas Dodd1 and Edward B. Thornton2 

Abstract. 
The growth of shear instabilities in the longshore current to finite amplitude 
is studied. It is shown, by considering near-critical conditions and the self- 
interaction of the fastest growing mode (FGM), that the basic flow is supercritical 
and that, therefore, the disturbance may be expected to evolve to a finite size, 
with frequency equal to that predicted by linear stability theory, and final ampli- 
tude proportional to the linear growth rate. This is consistent with observation. 
The mean flow may therefore also be expected to evolve to a new form. 

1    Introduction. 
The observations of Oltman-Shay et al. (1989) (referred to hereinafter as OSHB89), 
which were made in the presence of a strong longshore current and on a barred 
beach, show clear evidence of periodic motions at infragravity periods (> 50 s), 
but with short wavelengths compared to edge waves of similar frequencies. The 
motions are not attributable to edge or any other form of surface gravity waves. 
These wave-like disturbances propagate alongshore in the same direction as the 
longshore current and with a speed proportional to the strength of that current 
(OSHB89), and, to a first order of approximation, they are non-dispersive (un- 
like edge waves). Bowen and Holman (1989) (referred to hereinafter as BH89) 
suggest that the observations are of a shear instability in the longshore current. 
The observed frequency (for a particular wavenumber k) is then considered to be 
that associated with the fastest growing unstable mode (if more than one such 
mode is present). A detailed analysis (Dodd et al., 1992—referred to hereinafter 
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as DOT92) has confirmed that these wave-like motions are indeed shear insta- 
bilities. DOT92 also found reasonably good agreement between the shape of the 
observed variance spectra (especially that for the cross-shore velocity component) 
and that calculated from the predicted growth rate. They also demonstrated that 
bottom friction may provide a damping mechanism, which might explain why 
such instabilties are not seen more often. 

So far, only the linear, temporal instability problem has been tackled. How- 
ever, according to linear theory, unstable modes grow exponentially in time and 
so that theory may be expected to break down sooner or later, depending on the 
growth rates of the disturbances, which in turn depend primarily on the longshore 
current offshore shear and the damping (DOT92 estimate that the fastest grow- 
ing shear instabilities will grow by a factor e in 300 to 400 seconds). However, 
the observations of OSHB89 and DOT92 were over lengths of time far exceeding 
these comparatively short times: typically one to four hours. This implies that 
the observed oscillations (instabilities) are fully developed, in some sense, and 
that finite-amplitude effects are of importance. Nevertheless, using just the lin- 
ear stability theory, and assuming that only the fastest growing unstable mode 
is important (for any k): DOT92 do notice good agreement between theory and 
observation (in frequency-wavenumber space). The conclusion seems to be that 
linearly unstable modes do grow and equilibrate (i.e., evolve to a finite amplitude 
and a steady form), with their final amplitudes being proportional to their linear 
growth rate, at least to a "first approximation". 

In this paper we consider a weakly nonlinear theory. Unfortunately, this re- 
stricts us to so-called near-critical conditions (i.e., the longshore current shear 
is only just large enough to overcome the bottom friction and allow unstable 
modes to develop). Therefore, we shall also be restricted to only a small band 
of wavenumbers, centered on one critical value, kc, whereas the linear analysis 
(DOT92) predicts a wider band of unstable wavenumbers whose shape and width 
correspond to that of the observed spectra. Notwithstanding this, it seems rea- 
sonable to expect that the analysis (based on the pioneering work of Stuart (1960) 
and others) will have physical relevance because it is centred on the wavenum- 
ber that will have the largest growth rate, and so and will at least reveal the 
qualitative long-time behaviour of the disturbances. The aim of this analysis is 
to confirm that the linear instabilities will evolve to a steady final form and to 
predict the amplitude of these forms. 

In §2 the existing theory of the longshore current and of the shear instabilities 
of the longshore current are briefly reviewed, and the relation of each to the other 
is shown. In §3 finite-amplitude effects are introduced, and an evolution equation 
governing the long-time growth of the instabilities is derived. Results are shown 
in §4, and some conclusions are presented in §5. 
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2    Linear Theory. 
We adopt a right-handed coordinate system in which y is the alongshore, x the 
cross-shore, and z the vertical coordinate. The water depth, z — —h, is assumed 
uniform alongshore: i.e., h — h{x). The total horizontal velocity field is denoted 
by u = (M,W), and we write the depth and time averaged horizontal velocity field 
as U(x, y, t), and decompose u into 

u = u{x,y,z,t) + V_{x,y,t), (1) 

where time averaging is performed over one period (Tg) of the incident waves, u 
represents deviations from the averaged velocity field; in particular, it represents 
the contribution to u from the incoming wind waves, and the definition (1) => 
{flu &» dz) = 0, where the triangular brackets denote the aforementioned time 
average. U_ will only depend on the horizontal coordinates and a long timescale, 
and will therefore contain both the mean flow (i.e. the longshore current) and 
any long-time perturbations in that flow (i.e. shear instabilities in the longshore 
current). Similarly, ri(x, y, t) is decomposed into ?? = fj+{r)) = TJ(X, y, t)+((x, y, t). 
Shear instabilities in the longshore current possess typical periods of 0(100- 
1000 s), and so their period is an order of magnitude greater than Tg. These 
timescales are clearly consistent with the above decomposition. 

The shallow water momentum equations may be written as 

"K + ft»[f + ^]-»« + <-£*- <*>• W 
for i = l,2 (see Mei, 1989), where (r;) is the ith component of bottom friction, and 
Sij are components of the radiation stress tensor. If, for the moment, we assume 
that all averaged quantities are time independent—and are therefore dependent 
on a timescale infinitely, rather than finitely longer than Tg—and make use of the 
assumed alongshore uniformity, then continuity =$• U = (0, V(x)) (see Mei, 1989). 
Therefore, the left side of (2) is identically zero, and the cross-shore momentum 
equation can be written as 

0 = --^ L_«^ (3) gdx     P(C + h)   dx w 

and the corresponding alongshore equation as 

where C = (s(x) is the mean, wave-induced change in the water level (i.e., the 
set-up/set-down). The superscript '(0)' is used to show that these terms are only 
included at their leading order (i.e., only the time-independent current V(x), 
and C,s{x) are included). C,s{x), can be found from (3); V(x), is found from (4). 
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In the model of Thornton and Guza (1986)—referred to hereinafter as TG86— 
which we shall examine in detail, an analytical form is derived, by assuming that 
the incoming waves are narrow-banded in frequency but Rayleigh distributed 
in wave height, that the beach is plane with a slope s, and that the longshore 
current, V <C {\u\) (the weak current assumption; see Mei, 1989). The alongshore 
momentum equation (4) then becomes 

0 = -j^S® - Pc}(\u\)V, (5) 

and we can write 

where c/ is the bottom friction coefficient, and the constants K\ and /C2 can be 
found in TG86. Cs is small compared with the depth for almost all x. Only very 
close to the idealised shoreline x = 0 is C,„ > h. This makes virtually no difference 
to the ensuing analysis, so we shall ignore C,a in calculations from now on, though 
we retain it in the derivations for the remainder of this section. 

Following BH89, we may examine the linear stability of the mean, laminar, 
inviscid flow U = (0, V{x)) by superimposing a disturbance on that flow. Thus, 
U is decomposed as 

U = {u\x,y,t),V{x) +v\x,y,t)). (7) 

Here, v! and v' represent perturbations in the components of the mean flow 
(0,V(x)); C is treated similarly: £ = (s(x) + (,'{x,y,t). Thus, C now consists 
of C and an additional contribution due to the perturbations in the mean flow. 
Substituting (7) back into the momentum equations, we get 

u't+vu'y+u'u'x+v'u'y = -g[G+a-\7;j;^V'   w 
dC + C' + h) ' 

v[ + Vv>+u>Vx + u>v>x + v'v>   =   -<-{S
p^lpSy (9) 

where the superscript '(1)' denotes the inclusion of the perturbations in these 
quantities. If we now subtract (3) and (4) from (8) and (9) respectively, we get 

ut + Vuy + uux+vuy-    g(x p(Cs + C' + /0    +P(Cs + h)      {W) 

Vt + Vvy + uVx+uvx + vvy = -gCy   -      p{Cs + c + h)    +      p(G + /l)(
U) 

These equations differ from (8) and (9) in that the mean motion has been sub- 
tracted out. Thus, (10) and (11) may be regarded as perturbation momentum 
equations. 
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Equations (10) and (11) are linearised by assuming that v! and v' are much 
smaller than the longshore current, and that, therefore, products of perturbed 
quantities are negligible. The quantities are further simplified by assuming that 
SJj' « Slj. (s may also be neglected when compared with h. This gives us 

,/4.v,/   -     „r>    lfo(1)) - M0))I _    nC,    n (u) ut + Vu
v   =   -9(,x -^   - ~9QX - J » (12) 

v> + w> + u'vx = -< - [(T2(1));,(T2(0))1 = -K -1 •    (13) 

Finally, a rigid-lid approximation is imposed, which enables us to introduce a 
stream function \£, where u' = ~^y/h and v' = Vx/h, so (12) and (13) can be 
combined into a single vorticity equation in \P. Assuming a harmonic dependence 
in t and y, ^(x,y,t) = Re{<f>(x)ei(-kv~utty, then a stability equation analogous to 
the Rayleigh equation (see Drazin and Reid, 1981) is derived. The form of the 
stability equation depends on the form of the bottom friction terms on the right 
of (12) and (13). Here, we use the weak current assumption (for consistency with 
the TG86 model). In this case, 

-r =-ru' and -r2- = -v' where /z   =   cd(\u\)   =   cd-u0(x),        (14) 
h       h h      h 7r 

and Cd is also a bottom friction coefficient, theoretically the same as c/ and 
therefore determined empirically, but for our purposes treated as a parameter; 
|«o is given by equation (16) of TG86. We write the resulting stability equation 
as 

{V-iii/kh-c)C<t>   =   h(Vx/h)x<j> + (i/k)(tJ,/h)xcpx-(in/kh)k2(t>,       (15) 

where C(j> = (j>xx — {hx/h)4>x — k24>, but we shall ignore the last two terms that 
appear on the right of (15) hereafter. The exclusion of these terms makes only a 
small difference in results (Dodd, 1992), but the simplified equation is desirable 
from the point of view of the ensuing weakly nonlinear analysis. Equation (15) 
is solved subject to the no-normal-flow boundary conditions cf>(0) — <j>(oo) = 0. 
If it is assumed that k is real, then u> and c = u>/k are in general complex. If 
u> possesses a positive imaginary part, then the mode grows exponentially (as 
t —> oo), and is therefore deemed unstable. Denoting 5R(o>) = u)r and 9(w) = u>i, 
then ur defines the frequency, cT = ojv/k the phase speed, and Wi the growth 
rate. If we ignore the bottom friction terms (i.e., put Cd = 0), then the stability 
equation of BH89 is arrived at. 

Results of a linear stability analysis of (15) for the V profile of TG86 are shown 
in Fig. 1. For a = 0, the fastest growing point on the growth rate curve is situated 
at k « .055 m_1 (wavelength A = 2^/k as 114 m), and has an associated period 
(Fig. lc) of about 360 s. We refer to this disturbance as the fastest growing 
mode (FGM) (this terminology can be slightly misleading since for the TG86 
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Figure 1: Linear stability for the TG86 model, (a) Real phase velocity, (b) 
imaginary part of phase velocity, (c) radial frequency, and (d) growth rate. Solid 
line: cd = 0. Chained line: cd = .003. (c/ = .009). 

profile there is only one unstable mode for any k; the mode—eigenfunction—is 
continuously dependent upon k). 

The inclusion of dissipation (cj = .003) reduces growth rates, though not quite 
uniformly. The position of the FGM is now at k « .045 m_1. Frequencies (or 
phase velocities) are barely affected by the inclusion of friction. Clearly, at the 
FGM dw/dk = dwr/dk, and in its vicinity, dw/dk « duT/dk, and so the group 
velocity will be the true velocity of displacement. It can also be seen that, to a 
first approximation, the motions are non-dispersive. Of course, as Q is increased 
the growth rates are reduced still further, and the width of the band of unstable 
wavenumbers diminishes. The dimensionless parameter c^1 plays a similar role 
in this problem to that of the Reynolds number in the viscous stability problem. 
If c^1 is decreased beyond a critical value, c^"1 (and therefore Q increased), 
then all (small) disturbances will be completely damped and no instability will 
develop. At Q 

1 = QJ
1
 all wavelengths are damped except for k = kc, which is a 

neutral disturbance. Therefore, k = kc and cj1 = Qj1 are referred to as critical 
conditions. In Fig.2, the neutral stability curve for (15) for the TG86 model is 
shown. If cjl is increased slightly above its critical value, then we have so-called 
near-critical conditions 

k = kc    and    cJ1 = cd7
1 + Ac/. (16) 

Under these conditions, a small set of wavelengths, centred on the critical wavenum- 
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Figure 2: Neutral stability curve for the TG86 model. The asterisk shows the 
position of critical conditions (kc, cd~

l) 

ber k = kc, becomes unstable, and propagates in the direction of the current at 
group velocity cg « C3T W cr{k = kc). It is at these near-critical conditions that 
the weakly nonlinear analysis of the next section applies. 

Finally, it is important to note that c; and cd are actually one and the same 
(= .009, NSTS, Feb. 4th, 1980; see TG86). The value of cd = .003 was chosen in 
Fig. 1 so that the effects of bottom friction could be seen without the instabilities 
being damped entirely (as they are for cd — .009). Thus, it is also important 
to realise that decreasing (or increasing) the bottom friction coefficient not only 
reduces (increases) damping of the instabilities, but also increases (reduces) the 
longshore current shear (cf. (6))—if we were to be consistent and put a = Cf = 
.003 for the stability analysis in Fig. 1, we should expect all quantities to be three 
times as large. Of course, the case cd = cf = 0, which would predict an infinitely 
large V, would be physically meaningless. 

From now on, we take c/ and cd to be the same, (called cd) but continue to 
treat the bottom friction coefficient as a parameter. 

3    Weakly Nonlinear Theory. 

If we dispense with the assumption of small amplitude, then we can define mean 
momentum equations appropriate for the finite-amplitude disturbance by aver- 
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aging (8) and (9) over one alongshore wavelength A: 

^r + ¥¥   _       gCL_{gu}. + <^)) (17) 

~        dx     Ptt' + (° + h')' 

-V  =   JW' + Wl (18) 
pit' + C + h) K   ' 

where the overbar denotes such an average. Amended perturbation equations 
may also be derived, by subtracting (17) and (18) from the full equations (8) and 
(9). If we again use the weak current assumption, we get 

u't + Vu'y + u'u'. + v'u'y-W^-^   =   -g(x-2^u', (19) 

v't + VVy + u'Vx + u'vx + v'Vy-¥¥x   =   -gt'y-^V. (20) 

The difference between these equations and those of the preceeding section is a 
different definition of what constititutes a mean. 

By cross-differentiating (19) and (20) and then subtracting the second equa- 
tion from the first, we get 

{« + ^ + ^ + ^}(-T^)-T = Sk(fc)-&(fc)}'   (21) 

where II = v'x - u'y and X = u'v'x. Note that all the mean motion has been 
subtracted out of (21). This motion may straightforwardly be retained in an 
equation such as (21), but we prefer to keep the equations for mean and fluc- 
tuating motions separate. Recall that, for a prescribed longshore current profile 
(V = V(x)), linear theory predicts a stream function \P of the form ^(x,y,t) = 
Re{<j>(x)e^ky-u'rt'>eUit}. It has been shown (DOT92) that the frequency so pre- 
dicted (wr) is in good agreement with the observed frequency for a given wavenurn- 
ber, k. Furthermore, linear theory consistently predicts that uT 3> Wj, even in 
the absence of bottom friction, so that it may safely be assumed that \P grows 
appreciably only over times in excess of the linear period, 27r/wr. It is, therefore, 
natural to regard eWi* as an amplitude modulation function. Clearly, however, * 
will not continue growing without bound, and so e"rt must be considered to be 
the "short-time" expression of a more general (complex) amplitude modulation 
function a(t). Thus, for the nonlinear problem we have 

*(x,i/,t) = Re{a(t)(l)(x)e^ky-U^}. (22) 

The initial time t = to, present through the constant do = a(t = to), provides a 
measure of how long the linear solution will be valid and the amplitude remain 
small, and therefore of how long linear theory remains applicable. By hypothesis, 
a(t) ~ eUit as t —> —oo, and a0 —> 0. The long-time asymptote of a(t), a^, — 
limbec a(t) (if such a limit exists) is the amplitude to which the initially small 
disturbances will evolve. 
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The weakly nonlinear problem can now be formulated by introducing a small 
parameter e, such that at near-critical conditions we have c^1 = Ci~x + e2K (cf. 
equation (16)). We expect w, and Ac^1 to be closely related, and expanding 
u>i in a Taylor series about QJ

1
 we find that uji(k = kc, c^1 = cj^1 + AcJ1) = 

doji/dc^1(k = kc, cj1 = cd~l)e2K + 0(e4). The amplitude a is dependent on a 
"slow" time coordinate T = e2t. We ignore the small but finite sidebands around 
k = kc, and restrict ourselves to just the one, critical wavenumber; thus the 
disturbance will grow only by self-interaction. 

Physically, we can think of the above conditions as being brought about by 
waves reaching the coast and building up the longshore current to the extent that 
the offshore shear in the current just overcomes the critical damping {c,Qx), so 
that instabilities with wavelength 2-K/kc develop. It is also implicitly assumed 
that the mean longshore current from which the instabilities begin to develop is 
steady. 

The ansatz (22) is expanded to allow for self-interaction and for near-critical 
conditions: 

°°   1 
* = £ kMx, ^e•^-""" + Mx, t)e-n*k°y-»^} , (23) 

where a circumflex denotes a complex conjugate. Note that (23) still retains 
the phase velocity cr, associated with the linear theory at critical conditions. 
The functions %jjn are expanded as tpi = ea<fii(x) + e3a2a<f)n(x) + ..., and -02 = 
e2a2<t>2(x) + ..., etc., where </>i(0) = <j>i(oo) - 0n(O) = </>n(oo) = <jf>2(0) = 
02(oo) = 0, etc.. Thus, the O(e0) mean flow (V(x)) becomes unstable, giving 
rise to O(e) fundamental disturbances (ip1e

1(kcV~Urt) and c.c). These, in turn, 
interact with each other, producing either 1st harmonic or mean components at 
0(e2). These components interact with components at 0(e) to produce additional 
fundamental components and components at 2nd harmonic. This, it turns out, 
is as far as we need to go, and all terms of 0(e4) are ignored; for more details see 
Stuart (1960). Note that the mean terms are not included in (23), as they have 
already been subtracted from the momentum equations (see (19) and (20)); all 
these terms (up to 0(e2)) are present in the mean equations (17) and (18). For 
the TG86 model, (18) becomes 

phu'v>x = -—S12 - p(cdc + Ac^XlaDV. (24) 

More generally, we can write 

V2(x,t) = Vrixtfl + ~)+ e2\a(t)\2f(x) (25) 

where V\ is the solution at O(e0) (i.e., the TG86 model, (6), at critical condi- 
tions). \P(a;,2/, t) and (23) are substituted into (21), and the various harmonics 
are collected (see Dodd (1992) for the resulting equation).  The mean equation 
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(up to 0(e2)), is already given by (25). For the fundamental, the equation is (at 
0(e)) the linear problem of the previous section, (15) (but at critical conditions 
so that fj, — nc = Cdc(|tt|) and k = kc). At 1st harmonic (0(e2)) there is an in- 
homogeneous equation—inhomogeneous because the fundamentals force the first 
harmonic by self-interaction. Finally, the fundamental also has a contribution 
at 0(e3). It is this equation that requires a secularity (or compatibility) con- 
dition for its unique solution, and this condition yields the amplitude evolution 
equation. From this equation, and its c.c, it is easy to derive 

$jjf   =   2a\af-£\a\\ (26) 

where £ is a real constant called the Landau constant, and it can be shown that 
a « Wj. All these equations and expressions are given in Dodd (1992). 

The equation (26) is readily integrated to give 

Ce^ 2ui\a0\2e-2»<t° 
\a\   = -, : r-     where    C = —-5-, (27) 

(l + JLCe***) 2uJi-e\a0\
2 

and where a has been replaced by w*. We are only concerned with cases where the 
longshore current is linearly unstable, i.e., u>j > 0. In this case, as t —+ 00, \a\ —> 
2uii/£, for any a0, as long as £ > 0. The flow may then be expected to evolve 
to a new, steady form (i.e., to equilibrate). When £ > 0 the flow is said to be 
supercritical. Conversely, if £ < 0, then any infinitesimal disturbance will become 
unbounded after a finite time. In this case, the flow is deemed subcritical, because 
this breakdown can occur below critical conditions, for a finite disturbance (see 
Drazin and Reid, 1981). Physically, we expect the flow to settle down to a new 
steady form after some time, and that this form will have a period 2ir/cjr (i.e., 
£ > 0). For a sufficiently small value of t the disturbance a(t) amplifies like 
exp(wji), corresponding to linear instability. 

4    Results. 

For the TG86 model, kc « .0453 m-1, and a'1 « .0083527. Finding the value 
of £ requires a lot of computation: the linear (fundamental) problem must first 
be solved; then the problem for the first harmonic; and finally the the integrals 
needed to find £ must be calculated. At the above critical conditions, it was found 
that £ « 12300 s-1. For Ac^1 = 40 (corresponding to a decrease in the bottom 

friction coefficient of about .0028 from critical conditions), a^ = j2a/£ « .00052. 
This figure is only meaningful when it multiplies the appropriate quantities. In 
Fig. 3 the resulting amplitudes of the velocities of with the fundamental and 
1st harmonic disturbances are shown. The longshore current maximum is about 
.53 ms_1, so the fundamental disturbances reach about .066 of this value. The 
velocities associated with the first harmonic are at 0(e2), and are therefore smaller 
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Figure 3: Moduli of complex perturbation velocities: Acd * = 40. 

still. Also at this order is the term representing the deformation of the longshore 
current; it and V(x) are shown in Fig. 4. The effect of the mean deformation on 
the TG86 profile can just be discerned in Fig. 4a. For a larger value of Ac^1 these 
amplitudes would all be larger (\a\ oc \jAcJ1), and vice versa. However, even with 
Ac^"1 = 40, a large band of unstable wavenurnbers is admitted, whose effects on 
each other are ignored in this analysis. Furthermore, the larger Ac^1 becomes, the 
further away from critical conditions we get, and the ordering assumptions behind 
the analysis breaks down. Nevertheless, for Ac^"1 = 200, the same velocities are 
shown in Fig. 5. The perturbation velocities reach about 0.075 ms-1 (about 
one sixth of the current maximum), which is more typical of the observations of 
OSHB89, and DOT92. 

The analysis of the previous section actually applies for any near-critical con- 
ditions; i.e., we can find a Landau constant for any point on the neutral curve 
shown in Fig. 2. We calculated its value for kc = ki = .0209 m_1 and kc = k2 = 
.08085 m_1 (both of which share the same critical value of a = Cdc = .00689, 
Cd'1 « 145). For fcj, 4 « 6900 s_1, and for k2, t2 « 200,000 s_1. Although 
these values are not absolute indicators of the resulting perturbation amplitudes 
(because they depend on the normalisation of </>1; which was not uniform for the 
numerical scheme used herein), they do tell us that (1) for resulting amplitudes 
for fci are bigger than for k2, and (2) for all values of A; tried so far, I > 0. Of 
course, these and all other such points on the neutral stability curve will only 
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Figure 4:   (a) V(x) for TG86 (solid line), and modified mean current due to 
instability, (b) mean component due to instability: Ac^1 = 40. 

exhibit instability after the overall critical condition (i.e., that at k ta .0453 m-1) 
has been surpassed, and will therefore be of lesser importance. 

5    Conclusions. 

It has been shown that, at least for the TG86 V profile and for the stability 
equation (15), the longshore current is supercritical and disturbances may be 
expected to evolve to a finite, steady amplitude (£ > 0). This is in agreement 
with the observations of OSHB89 and DOT92. Only three positions on the neutral 
stability curve have been examined, but it seems very likely that t > 0 for all k 
between k% and ki at least. Most importantly, this is true for the overall critical 
condition at k = .0453 m_1 (see Fig. 2). 

At true near-critical conditions (represented here by Ac^"1 = 40), the funda- 
mental disturbances evolve to only about l/15th of the V-maximum, whereas the 
observed disturbances were more typically one third of this value. This may be 
indicative of a number of things: (a) The V and h profiles measured at Duck, 
North Carolina (where the observations of OSHB89 were made) were significantly 
different from the TG86 model, and the barred beach profile and stronger current 
shear there may give rise to larger amplitudes (though without doing the weakly 
nonlinear analysis for these data it is hard to say). If this were so, it might provide 
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Figure 5: Linear stability for the TG86 model, (a) Original (solid line) and 
modified mean current, (b) mean component due to instability, (c) and (d) moduli 
of complex velocities due to instabilities: AcJ1 = 200. 

a further, accompanying (and highly intriguing) mechanism for explaining why 
longshore currents on a plane beach do not 'apparently' become unstable: even 
if an instability were to develop, it will be restricted by nonlinearity to a small 
amplitude. Of course, linear growth rates for Duck are much larger than those 
for the TG86 model (Santa Barbara, California; DOT92), but the weakly nonlin- 
ear analysis only applies for near-critical conditions. The problem is then one of 
whether or not V continues to increase above critical conditions faster than do the 
instabilities that would presumably appear as soon as these conditions are first 
exceeded. In the time series shown by OSHB89 (Fig. 8 of that paper) it ax>pears 
that the instabilities develop rather faster than V, as they seem to be established 
well before the end of the record. Whether this is true in general is not known. 
If it is not, then the weakly nonlinear approach would not be appropriate. 

(b) Though near-critical conditions may be appropriate, the simple model 
presented here, in which only one wavenumber kc is important, may be unrealistic, 
because kc is only a 'first among equals' (Drazin and Reid, 1981), wavenumbers 
immediately to the sides of kc having growth rates only infinitesimally smaller 
than that for the FGM. Thus there will be a group of wavenumbers propagating 
at group speed cs « du)T/dk (see §2). In this case, the appropriate analysis is 
that of the Ginzburg-Landau equation. The stable solutions given by the theory 
presented here (stable only to self-interaction), may no longer be so for other 
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wavelengths (there may be a side-band instability), and disturbances may evolve 
further to a larger amplitude. Work on this topic is now under way. 

It is clear that, whatever their eventual amplitude, instabilities will in some 
measure modify the mean longshore current profile. The appropriate equation for 
determining this profile would therefore be an equation like (24). However, some 
confusion seems to have arisen concerning this new, mean profile: the profile 
produced by the instabilities is only the mean component of a fully developed 
finite disturbance; the flow is stable to disturbances of wavenumber kc, and it is 
no longer laminar, and the methods of linear stability can no longer be applied 
to it. Therefore, any new, large shears apparent in the new profile should not be 
interpreted as leading to new instabilities. 

This work provides justification for the growth rate scaling of DOT92. The 
final amplitude is indeed proportional to the growth rate, and the very large value 
of i for hi indicates that the amplitudes will decrease rapidly with increasing k 
(Wr). 

Finally, two points should be mentioned: (1) The rigid-lid assumption does 
in fact break down in the weakly nonlinear analysis, but only at 0(e3). This 
produces a small correction to the growth rate; (2) Bottom friction is not the 
only form of damping of the instabilities; turbulence induced by wave breaking 
will also have a direct effect, and should be examined in future studies. 
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