
CHAPTER 194 

TOTAL RATE AND DISTRIBUTION 
OF LONGSHORE SAND TRANSPORT 

Akira Watanabe1 

Abstract 

Longshore sand transport rate has been computed, for 2,520 cases covering 
field- and laboratory-scale conditions, using a general formula for local transport 
rate in a coexistent wave-current field proposed by the present author. The com- 
puted total transport rate has been well related to the alongshore component of 
wave power and two other parameters. Cross-shore distributions of the longshore 
transport rate have also been studied. 

1.   Introduction 

Longshore sediment transport plays a very important role particularly in 
long-term beach evolutions. In the longshore transport, sand grains are set in 
motion mainly by wave action and then carried by a longshore current. How- 
ever the total transport rate is usually estimated using the CERC formula or 
its equivalence, which relates the total rate directly with the so-called longshore 
component of energy flux (or power) of breakers and does not explicitly involve 
the longshore current velocity. The CERC-type formulas are based on the power 
or energetics model concept and field measurements, but their reliability and ap- 
propriate values of the coefficients are yet debatable. In addition there have been 
only few studies on the cross-shore distribution of the local transport rate, which 
is regarded as important as the total rate for various engineering problems. 

Watanabe et al. (1986) have proposed a power-model type formula for local 
sediment transport rate under combined action of waves and currents, whose 
validity has been confirmed through numerous fundamental studies and practical 
applications (e.g., Watanabe et a/.,  1991).   This local transport rate formula 
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is applied in the present paper to the evaluation of the total rate and cross- 
shore distribution of the longshore sand transport under regular waves on straight 
beaches. 

2.   Computational Procedure for Waves, Currents and Sand Transport 

2.1  Computational conditions 

From the standpoint of such fundamental studies as this, computation of 
waves, currents and sediment transport should be performed for conditions as 
simple as possible. It has therefore been assumed in the following computation 
that the shoreline and depth-contour lines are straight and parallel to each other, 
that incident waves are regular and uniform in the alongshore direction, and that 
the sediment grain size is spatially uniform. On the other hand, for the sake of 
generalization of discussions, the computation has been conducted for a total of 
2,520 cases: six values of the sand grain diameter d, four values of the uniform 
bottom slope tan/? and a bar-type beach, and three, seven and eight values of 
the incident wave angle 60, period T and height H0, respectively, as shown in 
Table 1, covering field- as well as laboratory-scale conditions. 

Table 1   Computational conditions. 

d 
(mm) 

tan/3 00 

(deg) 

T 

(•) 

Ho 
(m) 

0.2 

0.5 

0.8 

1.1 

1.5 

2.0 

1/10 

1/20 

1/30 

1/50 

bar-type 

15 

30 

45 

1.0 

1.5 

2.0 

0.02 

0.04 

0.08 

0.16 

6.0 

10.0 

14.0 

18.0 

0.3 

0.6 

1.2 

2.4 

2.2  Computation of nearshore waves 

A set of time-dependent mild-slope equations, proposed by Watanabe and 
Maruyama (1986) and improved by Watanabe and Dibajnia (1988), can deal 
with most of nearshore wave deformation such as shoaling, refraction, reflection, 
diffraction, breaking and recovery. For the present problem, we can reasonably 
neglect the wave reflection from the shore and the refraction due to the presence 
of currents, and then the time-dependent mild-slope equation set reduces to the 
following simple wave energy equation: 

d 

Ax 
(H2Cgcos9) = -nfDH

2 
(1) 

where x is the shoreward coordinate, H is the wave height, Cg is the group 
velocity, 9 is the wave angle, and n is the shallowness factor. The quantity /D is 
the breaker-induced energy dissipation factor and defined as: 
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/D = £tan/° ^ WD)- (2) 2       H\D\     is-iT 

is = 0.8 (0.57 + 5.3 tan/?),     j'r = 0A{H/D)B (3) 

in which D = h + r\ is the local mean water depth (h: the still water depth; r\: 
the mean water surface elevation), and the suffix B indicates the breaking point. 
Equation (1) has been solved together with SnelPs law and Eq. (4) for the wave 
setup/down to obtain cross-shore distributions of the mean water depth D, wave 
height H, wave angle 6, group velocity Cg, and so on. 

dr? 1   dS^ 
da; pgD dx 

where Sxx is the normal component of the radiation stress, and p is the water 
density. The location of wave breaking has been determined using a generalized 
breaker index expressed in terms of the ratio of the horizontal orbital velocity at 
the wave crest to the wave celerity (Watanabe et al, 1984). 

2.3 Computation of longshore current 

Since the wave field is stationary and uniform in the alongshore direction, 
the longshore current velocity has been computed by the following equation 
(Nishimura, 1988): 

pCtWVt-^- 
dx 

HeD- 
dx 

+ ^ = 0 (5) 
da; 

W = W + (u • sin 6>)7W,    M=(2/7r)M6 J 

W = yVe
2 + u2 + 2Vtusm9 + ^Vt

2 + u2~2Vtusm9] /2 j 

where 

Me = pNfyJgD (7) 

in which V( is the longshore current velocity, Ci is the friction coefficient for the 
current, Sxy is the tangential radiation stress, «(, is the near-bottom orbital veloc- 
ity amplitude, fj,e is the lateral mixing coefficient, and £ is the offshore distance 
from the mean shoreline. A value of 0.01 has been adopted for N. 

In most of the previous computation of nearshore currents, constant values 
(on the order of 0.01) have been used for the friction coefficient C{. However, since 
its value significantly affects the magnitude of the longshore current velocity and 
the resultant sediment transport rate, we should determine Q in a more objective 
and reasonable way. Hence, in the present study, local values of C{ have been 
estimated using a frictional law of Tanaka and Shuto (1981) for a wave-current 
coexistent field and empirical formulas of Sato (1987) for ripple formation due to 
waves. 

For this, first we calculate at each local point the near-bottom orbital diam- 
eter do using the small-amplitude wave theory as well as the friction coefficient 
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/cw using the frictional law, in which the presence of the longshore current is 
ignored and the equivalent roughness ks is set equal to the sand grain diameter 
d. The empirical formulas of Sato give the critical conditions for the forma- 
tion/disappearance of sand ripples and the ripple size as functions of the Shields 
number and do/d. Then we evaluate the friction coefficient C{ using the frictional 
law, in which this time the longshore current is included and the equivalent 
roughness ks is set equal to the local ripple height, if ripples exist, or to the grain 
diameter d in case of no ripples. (According to previous studies, the equivalent 
roughness is about four times as large as the ripple height. However, the rip- 
ple height itself has been employed as ks in this study, because the ripple crest 
orientation is rather parallel to the longshore current direction.) Cross-shore 
distributions of the longshore current velocity V( have been thus computed by 
iteratively solving Eq. (5) together with the frictional law for unknowns V( and 

Ct. 

2.4 Computation of longshore sand transport rate 

The sediment transport rate formula proposed by Watanabe et al. (1986) 
gives local transport rate, under general conditions of combined action of waves 
and currents, as the summation of the transport rate due to mean currents and 
that due to the direct action of waves. In the present study, by neglecting the 
latter, the following formula has been used for the computation of local immersed- 
weight rate i( of the longshore sand transport. 

it{x) = (\-ew)s-Ac [rb{x)-Tcr] Vt(x) (8) 

in which ev and s (= pt.jp— 1) are the porosity and the immersed specific density 
of the sediment, Ac is a dimensionless coefficient, fj is the maximum value of the 
periodical bottom friction in a coexistent wave-current field, calculated by the 
frictional law of Tanaka and Shuto (1981) with the equivalent roughness equal 
to the grain diameter, ra is the critical shear stress for the onset of general sand 
movement (Watanabe et al., 1986), and V( is the longshore current velocity. A 
value of 2.0 has been adopted for the coefficient Ac on the basis of recent studies 
(e.g., Watanabe et al, 1991). 

Total immersed-weight rate h of the longshore transport has been computed 
by the cross-shore integration of %i (x): 

roo 

h=-\     u(x)dx (9) 

where x0 is the locations of the mean water shoreline. Then total volumetric 
transport rate Qi has been calculated by the following equation: 

<fc = 7i—£ r (10) (1 - ev) (p, - p) g 
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3.   Results of Computation and Discussions 

3.1  Example of computation results 

As one example of the results thus computed, Figure 1 shows cross-shore 
distributions of the wave height H, wave angle 8, longshore current velocity Ve, 
near-bottom orbital velocity amplitude {<{,, immersed-weight sand transport rate 
it, equivalent roughness k„ friction coefficient Cf in the longshore current com- 
putation, and friction coefficient /cw in the transport rate computation, when 
d = 0.2mm, tan/? = 1/20, 80 = 45°, T = 10.0s, and H0 = 1.2m. 

The transport rate it becomes maximum between the breaking point and 
the location of the maximum Vt, as expected, not only in this case but in all 
the cases. The range where it takes significant magnitude is narrower than that 
for Vt and is comparable to the surf zone width. In the range of about 80m 
around the breaking point, the equivalent roughness ks is equal to the grain size 
d — 0.2mm and hence the friction coefficients Ci and /cw take common values. 
This is because the bottom friction in this range exceeds the critical value for the 
disappearance of sand ripples or the initiation of the sheet flow. 
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Pig. 1   Example of cross-shore distributions of computed quantities. 
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3.2 Total rate of longshore sand transport 

First let us study the relation of the total immersed-weight transport rate It 

with the longshore component of wave energy flux Pt at the breaking point: 

Pt = EBCgB-sin 9B cos 8B (11) 

where EB, CgB and 8B are the energy density, the group velocity and the wave 
angle of breakers. Komar and Inman (1970) have proposed the following linear 
relation between It and Pt on the basis of the energetics concept and field data: 

It = 0.77 Pt (12) 

in which the proportionality constant 0.77 should be halved if the energy density 
is calculated from the significant wave height as in the CERC formula. 

Figure 2 shows a relation between It and Pt obtained in the present com- 
putation for cases of d = 0.2mm and tan/? = 1/50. The relation is remarkably 
independent of the incident wave period T and angle 80. The magnitude of It 
is nearly proportional to P( under field-scale conditions, whereas it rapidly de- 
creases under laboratory conditions, in which the maximum friction T\, exceeds 
the critical shear rcr only slightly in Eq. (8). Such an overall trend is consistent 
with previous studies {e.g., Komar and Inman, 1970). 
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Fig. 2  Example of relation between It and Pt. 
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The relation between li and Pi for all the 2,520 cases is shown in Fig. 3, 
which indicates a trend similar to that in Pig. 2. In Fig. 3, different symbol 
marks are used for different grain sizes and beach slopes, but their effect on the 
Ii-Pi relation cannot be seen clearly because of the overlapping of many marks. 

10° 

10 to-5    io-4    io-3    io-2    lo-1    io°     IO
1 

Pi = EB C"JB cos 9B sin 9B   (tf-m/m/s) 

Fig. 3  Relation between li and P{. 

In order to make this clearer, we assume the linear relation, Ie = ajp • P(, for 
the 1,440 cases under field conditions, and calculate the proportionality coefficient 
ajp for each grain size and bottom slope using the least-square method. Figure 
4 (a) shows values of ajp normalized by the mean proportionality coefficient ajp 
for all the 1,440 cases. It is seen in this figure that ajp considerably decreases as 
the grain diameter d increases, being much less dependent on the bottom slope 
except for cases of tan/? = 1/10. The values of ajp range between 0.04 and 0.23 
with their average ajp — 0.078, which are very much smaller than 0.77 in Eq. 
(12) by Komar and Inman (1970) or 0.52 proposed by Kraus et al. (1982), being 
rather close to the value of 0.06-0.12 in an empirical formula presented by Sato 
and Tanaka (1966). In a summary, according to the present computation, the 
relation between 1/ and Pi is approximately expressed as: 

It = (0.04 ~ 0.23) P( ~ 0.078 Pt (13) 

For readers' information, Fig. 5 shows the relation between //, computed by 
Eq. (8) with the critical shear rcr = 0.0, and P(. They are proportional very well 
to each other not only for field-scale but also for laboratory-scale conditions. 
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Fig. 4 Dependency of proportionality coefficients 
on the grain size and the beach slope. 
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Fig. 5  Relation between // and Pi. 
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Komar and Inman (1970) have reported another empirical formula based on 
field data as follows: 

0.28 Pi (14) 

where 

Pi = EB CgB cos 9B -Vt/uw (15) 

in which V t is the mean velocity of the longshore current, and uhB is the amplitude 
of the near-bottom orbital velocity at the breaking point. Figure 6 shows the 
relation between It and Pi in the present computation, in which Vt has been 
evaluated by simply averaging Vt over the range from the breaker line to the mean 
shoreline. Data scattering in Fig. 6 has become small as compared to that in Fig. 
3. In addition, as shown in Fig. 4 (b), the dependency of the proportionality 
coefficient atp> on the grain size and on the bottom slope is also weak except for 
cases of tan/? = 1/50. Values of alpl is still much smaller than 0.28 in Eq. (14), 
and the relation of the two quantities is expressed as: 

It = (0.05 ~ 0.13) PI ~ 0.08 Pi (16) 
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1.1    El D a ED     • 
1.5   # © <8> *    • 
2.0    ® r> ca ©     * 

10 10"5      10"4      10-3      10~2      10"1       10°        101 

Pi = EB CgB COS 0B Vt/ubB   (tf-m/m/s) 

Fig. 6  Relation between It and Pi. 

In order that the relation It oc Pt oc Pt' holds good, the mean longshore 
current velocity Vt must be proportional to uiB • sin#B- Their relation is shown 
in Fig. 7. Although these two quantities approximately satisfy a proportional 
relation for an individual combination of the grain diameter d and the bottom 
slope tan/?, values of the proportionality coefficient change over the range of 
one-order of magnitude, depending on d and tan /?. 
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Fig. 7  Relation between V{ and «J,B -sin^s- 

Now let us make the following long wave approximation: 

CgB ~ \/gDB,    cos 9B ~ 1 

M6B K (iTB/2) ^/X>B = (J/2)^UB 

for the parameter P/ defined by Eq. (15). Then we obtain the relation: 

P/~(pg/47)H2
BV( (18) 

where j is the ratio of the wave height Hg to the mean depth £>B, and is practically 
constant. Hence we can expect a linear relation between the total volumetric 
transport rate Q( and a new parameter R( defined as: 

Rt = Hi Vt (19) 

which is consistent in the dimension with Qt- The relation between Qt and Rt is 
shown in Fig. 8. As expected, for the field-scale conditions, Qt is approximately 
proportional to R[ as expressed by the following relation (See Fig. 4 (c)): 

Qt = (0.020 ~ 0.053) Rt ~ 0.034 Rt (20) 

It is interesting (and strange in a sense) that the value of 0.034 of the mean pro- 
portionality coefficient in Eq. (20) is very close to 0.024 in the empirical formula 
presented by Kraus et al. on the basis of field data, because using the same data 
set they have obtained the value of 0.52 as the proportionality constant in the 
It-Pt relation, which is very much larger than the value of 0.078 in Eq. (13). 
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Pig. 8   Relation between Qt and R(. 

3.3 Cross-shore distribution of longshore transport rate 

As described in 3.1 in reference to Fig. 1, the local rate of the longshore 
transport i{ becomes maximum between the breaking point and the location of 
the maximum longshore current velocity, and takes significant values over a range 
as wide as the surf zone. However, since the cross-shore distributions of it may 
not necessarily be similar for various conditions of the grain size, bottom slope 
and incident waves, it seems difficult to express them in a single normalized form. 
Hence here we will examine only the magnitude of the maximum local transport 
rate i^max and the offshore distance X,tma,x of the point of i/maJt, which are regarded 
as the most important representative parameters in the cross-shore distributions 
of it. 

First, concerning the maximum transport rate jittlax, since the total rate Ie 

is approximately proportional to Pt and the width of the significant longshore 
transport zone is comparable with the surf zone width XB (the distance between 
the breaking point and the mean shoreline), itm^x may be related to a parameter 
St = Pt/X-s. As expected, it is seen in Fig. 9 that a fairly high correlation exists 
between «<max and St. According to Fig. 4 (d), the value of the proportionality 
coefficient atS = itmM/St obtained for the field-scale cases decreases as the grain 
size increases, being nearly independent of the bottom slope. Under the field-scale 
conditions, the relation between these two parameters is expressed as: 

W* = (0.075 ~ 0.24) St ~ 0.13 5, (21) 
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Fig. 9  Relation between and S{. 

Then the relation between Xi(m3.x (the offshore distance of the point of ^max 

measured from the mean shoreline) and XB is shown in Fig. 10, where plotted 
are points more than 2,300 except for the data with vmax < 10-7 tf/m/s. The 
two parameters show such a remarkably highly proportional relation that only a 
small number of points can be seen because of their overlapping. According to 
this figure as well as Fig. 4 (e), the proportionality coefficient axx = Xitma,x/XB 

takes nearly constant values depending very weakly on the grain size and the 
bottom slope. The relation is expressed as: 

*«m« = (0.52 ~ 0.83) XB ~ 0.72 ZB (22) 

4.   Concluding Remarks 

Major conclusions of this study are as follows: 

(1) The validity of the local transport rate formula and that of the conven- 
tional total rate formulas for the longshore transport have been reinforced each 
other at least qualitatively. 



2540 COASTAL ENGINEERING 1992 

H 

103 

3 
e 
5io2 

10' 

10° 

IO" 

f d tan 8 
• 

(mm) 1/10 1/20 1/30 1/50 Bar 
0.2    ® O ® e    • 
0.5   A A A A     A 
0.8   v V V V   • 
1.1    B D B m    • 
1.5   <8> o <8> <i>   • 

[.2.0    ® 0 ® e    • 1 

10" 10° 101 102 103 

XB    (m) 

Fig. 10  Relation between X;/ma,x and XB- 

(2) Under the field-scale conditions, the total immersed-weight transport 
rate Ii is approximately proportional to the longshore wave power component 
Pi. However, the value of the proportionality coefficient obtained in this study is 
very much smaller than 0.77 in Komar and Inman's formula and is rather close 
to the value in Sato and Tanaka's formula, decreasing as the grain size increases. 
It should be noted that in many examples of the actual application of the It-Pi 
formula to one-line models, values between 0.05 and 0.4 have been adopted for 
the coefficient on the basis of the calibration using past beach change data. 

(3) Under the laboratory-scale conditions, the effect of the critical shear 
stress Tcr cannot be neglected. 

(4) 7/ and P/ as well as Qt and Ri have also shown a highly proportional 
relation, respectively, particularly under the field-scale conditions. The propor- 
tionality coefficients are weakly dependent on the grain size. 

(5) Concerning the cross-shore distributions of the longshore transport rate, 
it has been found that ^max and S( as well as Xumax and XB are also proportional 
to each other. 

Further study should be conducted on the effects of the beach profiles (more 
realistic profiles, other than uniform slopes, corresponding to given conditions of 
sediment grain size and incident waves), breaker-induced turbulent stresses, grain 
size distributions, effective bottom roughness, beach transport in the swash zone, 

random waves, and so on. 
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