
CHAPTER 172 

COMPLEX PRINCIPAL COMPONENT ANALYSIS OF SEASONAL 
VARIATION IN NEARSHORE BATHYMETRY 

Guoxiong Liang1, Thomas E. White2, Member, ASCE 
and Richard J. Seymour1, Member, ASCE 

ABSTRACT Both the conventional Principal Component Analysis (PCA) 
and the Complex Principal Component Analysis (CPCA) were applied to 
analyze six nearshore profiles in Siuslaw, Oregon. Results indicated that 
the first two components derived from CPCA always outperformed those 
derived from PCA. This suggests that CPCA is a better method of 
describing the seasonal variation in nearshore bathymetry. The relative 
performance of CPCA on different profiles depended upon the coherence 
of the variation within those profiles. Furthermore, the concept of an 
absolute amount of variance was used in explaining the spatial variation 
of the predictability of principal components. 

INTRODUCTION 

Complex principal component analysis (CPCA), developed for meteorological 
application (e.g., Wallace and Dickson, 1972; Barnett, 1983), has been successfully 
used to describe an event of a fast-moving sand bar (Liang and Seymour, 1991). In 
comparison with conventional principal component analysis (PCA), also known as 
the Empirical Orthogonal Function (EOF) technique (e.g. Aubrey et al., 1980; 
Seymour, 1989), CPCA offers significant advantages. Besides being able to give a 
more compact description for the variation of the data set (fewer functions 
required), it can also detect propagating waves. 

However, most nearshore bathymetric data sets available consist only of 
seasonal surveys. One may argue that the seasonal variation in nearshore profiles is 
more like a standing wave than a propagating feature, and thus it might be 
unnecessary to apply CPCA to the seasonal bathymetric data. Therefore, a test using 
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seasonal data appears to be a rigorous method of evaluation. In order to compare the 
efficiencies of CPCA and PCA. in analyzing the seasonal variation in nearshore 
bathymetry, a set of multiple profile data from Siuslaw, Oregon, was analyzed. 

SEASONAL SURVEY DATA FROM SIUSLAW. OREGON 

The bathymetric data were collected from an area that is located in the mouth 
of Siuslaw River, Oregon (Figure 1). The Helicopter-borne Nearshore Survey 
System (HBNSS) was applied to measure the seabed elevation (Pollock, in press). 
The survey helicopter is fitted with a 26-meter weighted cable, graduated like a 
surveyor's rod. The elevations are read by a shore-based surveyor's level. The 
horizontal positioning is obtained using a shore-based electronic total distance 
station (TDS) aiming at a cluster of prisms mounted on the helicopter. The HBNSS 
surveys were carried out every winter and summer from 1981 to 1990. 

Six cross-shore profile sets, which are within an alongshore segment 
extending 762 m (2500 feet) from the North Jetty, were chosen for analysis. Each of 
them, with a length of 354 m, includes 30 grid points and 20 time steps. Some 
profiles show pronounced seasonal cycles (Figure 2). 

ANALYSIS TECHNIQUE AND RESULTS 

To apply CPCA, a profile is required to be transformed into a complex data set 
such as: 

Uj(.t) = ufi) +mj(t) 

The real part is simply the original scalar field. The imaginary part is the 
Hilbert transform of the real part. On the basis of the complex data, the complex 
cross-correlation matrix can be computed, consisting of: the eigenvectors 
(functional decompositions of the data) and eigenvalues (portions of data's variation 
represented by each eigenvector). It is customary to evaluate the performance of 
these analysis tools by the percentage of the variation about the mean, which is 
represented by each of the principal components. A comparison of PCA and CPCA 
is shown in Table 1. 

Table 1 Percentage of Variation Explained bv PCA and CPCA 

Profile 1st Component 1st & 2nd Components 

PC CPC PC CPC 

1 
2 
3 
4 
5 
6 

86.57 
77.00 
60.35 
56.01 
38.83 
36.91 

85.65 
75.28 
58.65 
55.50 
40.71 
41.63 

95.43 
88.21 
75.36 
71.95 
58.77 
55.98 

95.47 
89.41 
78.33 
73.80 
64.22 
64.46 
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Figure 1. Location map of Siuslaw, Oregon. 

The first and second complex components (CPC) can explain more variation 
than the corresponding conventional components (PC) in every case. In some 
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Figure 2. An example of seasonal variation in nearshore profile (Profile 1). 

profiles such as profile 6, the CPC is about 8.5% better. The data in Table 1 are 
shown graphically in Figures 3 and 4. 

DISSCUSSION 

However, it must be noted that, in some profiles (e.g. Profile 1 and Profile 2), 
the first conventional component can explain 1% to 2% more variation than the first 
complex component does. Also, the less variation contained in the first component, 
the better the performance of the first complex component compared to the 
conventional one. One possibility is that the complex analysis requires more degrees 
of freedom, and when artificially constrained to a very low number of functional 
modes (e.g., only one component), it will not behave reliably statistically. From the 
data in Table 1, it can be seen that once the number of components exceeds the bare 
minimum necessary for computation (one), the complex method performs better. 
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Figure 3. Variation explained by the first component. 
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Figure 4. Variation explained by the first and second components 

However, for the case of a fast-moving bar, the first component always 
outperformed the conventional component (Liang and Seymour, 1991). 
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The data suggest that the relative performance depends upon the coherence of 
the variation within a profile as described in the following paragraphs. For simple 
variation (coherent changes), most of the variation can be explained by the first 
component and the complex method has no particular advantage for a single 
component. For more complicated variations (non-coherent changes), there is less 
variation explained by the first component, and CPCA is always more effective. 

Figure 5 shows the conventional correlation (left) and complex correlation 
(right) between each grid point and grid points 5, 10, 15, 20 and 25 in Profile 1. 
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Figure 5. Comparison between conventional correlation (left) and 
complex correlation (right) in Profile 1. 

Each correlation is plotted in a vectorial format where the magnitude is indicated by 
the length of the vector. Full scale (correlation equals 1.0) is indicated by the 
correlation between point 5 and itself. For the complex correlation, the phase is 
arranged like the hour hand of a clock. A vector pointing upwards (downwards) 
indicates that the two time series are in-phase (out-of-phase); one pointing to the 
right (left) indicates that the grid point time series lags (leads) the time series 
indicated in the left margin by 90°, etc. It is obvious that the complex correlation 
between the grid points within this profile is rather similiar to the conventional 
correlation. Every grid point shows positive correlation with each of the other ones. 
The entire profile appears to be involved in highly coherent motion. In this case, the 
results of CPCA and conventional PCA are almost identical. 

A different result is revealed in Profile 6 (Figure 6). The difference between 
complex correlation and conventional correlation is significant. The correlation 
between grid points are much poorer than those in Profile 1. Also, correlation 
between certain points show an out-of-phase relationship. It suggests that the 
motion in this profile is not as coherent as that in Profile 1. In this case, CPCA can 
explain more variation than conventional PCA does. 
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Figure 6. Comparison between conventional correlation (left) and 
complex correlation (right) in Profile 6. 

In many instances, the first CPC may indicate a strong in-phase relationship 
between the time series at grid points while the second one indicates a weaker, out- 
of-phase relationship (Horel, 1984). In the conventional PCA, the correlation is 
simply a scalar. Therefore, it is not possible for it to reveal the phase relationship 
between different grid points. The data and results described above indicate that, 
within some standing-wave-like variation in nearshore profiles, both in-phase and 
out-of-phase correlations can exist. Therefore, since this cannot be determined a 
priori, use of the complex technique appears to be the prudent approach. 

One of the other interesting observations is that the percent of the variation 
explained by either PC or CPC decreases monotonically with distance from the jetty 
(see Figures 3 and 4), a reduction in predictive capability of about one third. To 
understand this change better, the absolute value of the variability was calculated. 
Figure 7 shows the mean value (over time) of the standard deviations (in space) of 
the six profiles. This shows clearly that there was much greater variability close to 
the jetty (nearly three times that of the minimum). Figures 8 and 9 show the data of 
Figures 3 and 4 normalized by the standard deviations shown in Figure 7. These 
show that, in both PC and CPC, profile 4 is predicted best in terms of the absolute 
amount of variance, and Figure 7 shows that profile 4 exhibits very close to the 
minimum amount of absolute variance. Therefore, the performance on profile 4 
could be considered to represent the basic capability of the principal component 
method to extract signals from the noise in the measurements and the physical 
processes. If this noise is uniform in magnitude, then as the absolute values of the 
variance increases (toward the jetty) the relative predictability ought to increase - 
and it does. On the other hand, if noise is somehow proportional to the signal, the 
relative predictability ought to remain more or less constant - and it does not. The 
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Figure 7. Mean standard deviations of profiles. 
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Figure 8. Variation explained by the first component normalized 

by the standard deviations. 

data set is too sparse to make conclusive statements on this hypothesis, but it might 
be of interest to test this on richer data. 
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