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NUMERICAL MODELLING OF THE STABILITY OF RUBBLE BASES 

By 

Wojciech Sulisz1 

ABSTRACT 

A numerical model is developed to predict the stability of rubble bases exposed 
to wave action. A boundary element method is applied to solve the problem of 
wave interaction with a caisson and its rubble base, and to calculate the velocity 
field. The predicted velocities are used to determine the destabilizing forces on 
individual stones. Theoretical results reveal two local minima in stability: in very 
shallow water and at intermediate depths. The rubble base stability increases with 
decreasing incident wave height, the rubble base height and the bench width. 
Preliminary results also show that the stability depends on the damping properties 
and that the stability increases with increasing permeability. 

INTRODUCTION 

A rubble base exposed to a wave action has to satisfy several requirements. The 
design of a rubble base requires an estimation of the weight of stones used to build 
the rubble base which is one of the most important design parameters. These stones 
have to provide stability of the rubble base during large waves. 

There are several empirical formulae for the determination of the stability of a 
rubble base. The empirical formulae are mainly a result of some modifications of 
the classical Iribarren or Hudson equations. However, it is a well known fact that 
the empirical formulae have a number of limitations. Additionally, an analysis of 
various parameters involved in the stability based on laboratory experiments is very 
time-consuming and expensive. Moreover, some conclusions regarding the stability 
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based on laboratory experiments may be severely contaminated by scale effects. An 
alternative method for the analysis of the effect of various parameters on the 
stability is still a widely recognized need. 

A numerical modelling of the stability of rubble mounds seems to be the 
alternative method. This method has been given more and more attention recendy 
(McDougal and Sulisz 1990; Sulisz and McDougal 1991). The numerical modelling 
is employed in the present work by modelling theoretically the interaction of water 
waves with a caisson and its rubble base and then employing predicted flow fields 
in a stability model to determine the required stone size. A similar approach was 
applied to determine the stability of rubble mounds beneath caissons by Sulisz and 
McDougal (1991). However, they used a constant value of the damping coefficient, 
which may underestimate or overestimate damping properties of the rubble base. 

NUMERICAL MODEL 

The model for waves interacting with a caisson and its rubble foundation is 
based on the unsteady Forchheimer equation of motion in the pores of a coarse, 
granular medium (Sulisz 1983; Sulisz 1985). The wave flow in the porous domain 
R and the adjacent wave field is governed by the following equations 

V2<E> = 0 (la) 

S^i + lp+gz +fti& = 0   , (lb) 
dt        p 

where the damping coefficient/, is 
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and S is the inertial coefficient, p is the density of fluid, g is the acceleration due 
to gravity, v is the kinematic viscosity, e is the porosity, K is the intrinsic 
permeability, Cf is the turbulent damping coefficient, T is the wave period, P is the 
pressure, <J> is the velocity potential, and the velocity vector V=V [&x, <1>J. 

The above model, Eqs. (1), has successfully been applied to describe the 
interaction of waves with a rubble-mound breakwater (Sulisz 1985), a composite 
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breakwater (Sulisz & McDougal 1988; Sulisz 1992b) and a rubble toe protection 
(Sulisz et al. 1989). The boundary element method has been used to determine <J>. 
Various results from the theoretical model have been confirmed by experimental 
data. 

Velocity fields determined by a solution of the problem of wave interaction 
with a composite breakwater (Sulisz 1992b) are used as the input data for a 
stability model. Forces acting on an individual stone are computed tangential and 
normal to the slope from the following Morison-type equations 

,dV. 
dt 

Fs = iCtoPA.Vs \V-s\ + CUsp<L* ±±CLn9An{V-n? , (2a) 

F. = jCDnPAnV-n\V-n\ +CMnp^-n±^Cu9As(Vsf ,        (2b) 

where s and n are the tangential and normal unit vectors with respect to the slope, 
respectively; (CDs ,CDn), (CMs ,CMn ),{CU ,CLn) are the drag, inertia and lift force 
coefficients in the direction of s and n, respectively; As and An are the 
cross-sectional areas of the stone in the direction of s and n, respectively; V is the 
volume of the stone. 
The velocity vector in Eqs. (2) is calculated at various positions along the slope 
from a velocity potential corresponding to a fluid domain rather than rubble base 
domain. Due to uncertainties in determining the direction of the lift forces it is 
assumed that the lift forces maximize the instability. 

Stability is based on the static equilibrium of the stone by examining lifting, 
sliding or rolling. An analysis shows that for a nearly spherical stone, the stability 
condition for rolling is the most critical. The detailed analysis of the static 
equilibrium of a sphere located on a layer of spheres in contact, shows that the 
critical condition for rolling is 

WB (tan p- tan a) cos a < FBtanP-F (3) 

where WB is the stone weight in water, P is the angle associated with location of 
spheres in relation to each other, and a is the slope angle. 

Several parameters like density, size, shape and placement scheme of the armor 
unit are involved in the stability model. Of course, the stability is also a function 
of the wave period, wave height, caisson shape, rubble base shape, porosity, 
permeability and turbulent damping properties of the rubble base. The model makes 
possible a detailed examination of the contribution of various parameters on the 
overall stability. Because calculations can be conducted on personal computers, the 
model may provide engineers with a useful tool for examining a variety of cases 
at a very low cost. 
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RESULTS 

The described model is first employed to calculate the flow field for a problem 
of interaction of water waves with a caisson founded on a rubble base (Fig. 1). The 
boundary element method is used to solve a boundary-value problem and to 
determine the velocity potential in the rubble base and in the vicinity of the caisson 
and its rubble base. The caisson of the width 2b/h = 0.5 is analyzed. The rubble 
base of the caisson is considered to be of trapezoidal cross-section and of various 
widths and heights, but of fixed slopes 1:2. Additionally, it is assumed that the 
inertial coefficient S = I, porosity e = 0.4, and that the damping coefficient is 
known for each analyzed wave frequency ( 0.04 < kh < 4 ). The calculations are 
conducted for a constant value of a dimensionless coefficient/which is related to 
the damping coefficient / via the following relation 

f=f/(khtanhkhf5 (4) 

where k is the wave number and h is the water depth. 

Fig. 1. Definition sketch 

A presentation of the results based on Eq. (lb) may be confusing and then- 
analysis difficult to follow if the damping coefficient/is kept constant over a wide 
range of wave frequencies, as is stressed by Sulisz (1992a). This is because the 
damping coefficient/is a function of the wave frequency even in a case where a 
pure Darcy motion law is applicable (Cy = 0) . Further analysis shows that the 
calculations based on a constant value of the damping coefficient usually 
underestimate rubble mound damping properties in shallow water or overestimate 
them for waves of intermediate lengths and in deep water. Of course the 
dimensionless coefficient / is still a function of wave frequency which is evident 
from Eq. (lc) and Eq. (4). However, in a case of a pure Darcy flow the coefficient 
/is directly related to a Darcy coefficient and the wave frequency is not involved 
in the relation. This implies that a presentation of the results versus a function of 



RUBBLE BASE STABILITY 1803 

wave frequency, based on a constant value of the dimensionless coefficient /, 
properly reflects features of a case with the pure Darcy flow in a rubble mound. 
The presentations of the results versus a function of wave frequency for different 
values off also provide insight into a significance of the nonlinear damping term 
included in Eq. (lc) for an analyzed quantity. 

A predicted flow field is used to calculate the required stone size of the rubble 
base. The calculations are conducted for the drag force coefficient CDs = CDn = 0.7, 
the inertia force coefficient CMs = CMn = 0.5, the lift force coefficient Cu = CLn = 
0.5. These values of the force coefficients are chosen based on the results of some 
previous works on the stability problem. Of course the force coefficients are 
parameters of the stability model and they require further research based on 
experimental verifications. 

The stability number, Ns, is used to present the output of the calculations 
conducted to estimate the required stone size of the rubble base. The stability 
number is defined as follows 

N. = 
(6/7t)1/3 Hd 

(5,-D   D 
(5) 

where Sr is the relative stone density, Hd is the incipient damage wave height, and 
D is the equivalent spherical stone diameter. 
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Fig. 2. Stability number versus kh; dlh = 0.6, clh = 0.2, Hlh = 0.1,/= 1. 

A typical dependency of the stability number on dimensionless wave number, 
kh, is presented in Fig. (2). In general, for relatively low rubble bases analyzed 
here, two local minima in stability may occur: a local minimum in very shallow 
water and a local minimum at intermediate depths. The local minimum in very 
shallow water is of interest only for rubble bases of small damping properties 
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Fig. 3. Stability number versus kh; dlh = 0.6,/= 1, — Hlh = 0.1, --H/h = 0.2, 
--H/h = 0.3, Hlh = 0.4, a) clh = 0.2, b) clh = 0.4, c) clh = 0.6. 
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where it may become a global minimum of the stability number. The local 
minimum in stability at intermediate depths is, in a majority of cases, our main 
interest, because this minimum is usually a global minimum of the stability number 
and requires further investigation. Of course in some cases, the plots of the stability 
number versus the dimensionless wave number may become more complex and 
additional minima may occur. 

The results presented in Fig. (2) show that the incident wave length is essential 
to predict the stability number. An additional parameter involved in the stability 
that belongs to a group of parameters associated with wave excitation properties, 
is the incident wave height (H). Figs. (3)-(4) show the stability number plotted 
versus dimensionless wave number for four ratios of the incident wave height to 
the water depth (H/h = 0.1, 0.2, 0.3, 0.4). Some plots for the steepest waves are 
omitted because the corresponding parameters of the incident waves exceed the 
breaking limits for progressive waves. Breaking may still occur for some waves 
included in Figs. (3)-(4) due to large reflection from a composite breakwater. 

The results in Figs. (3)-(4) are intuitive and the general conclusion follows that 
reported by Sulisz (1992a). The stability increases with decreasing incident wave 
heights. However, it is necessary to point out that the calculations are conducted 
for a constant value of the dimensionless coefficient/. Thus the presented results 
correspond to a case of the pure Darcy flow in the rubble base. Although, a 
contribution from the nonlinear damping term in the motion equation that is 
included in Eq. (lc) is expected to be rather small due to large reflection, some 
changes in the presented results may occur if the incident wave height is 
additionally included in the calculations of velocities via Eq. (4) and Eq. (lc). The 
main changes are expected in shallow water where a contribution from the 
nonlinear damping term may be significant and where the stability model is 
sensitive to the rubble base damping properties. 

The results presented in Figs. (3)-(4) also enable us to examine some parameters 
from a second group of parameters affecting the rubble base stability. This group 
is associated with the shape of the composite breakwater. The stability number is 
plotted versus dimensionless wave number for six rubble bases. An effect of the 
rubble base height and the bench width on the rubble base stability is investigated. 
The results show that deeper rubble bases are more stable. This conclusion is fairly 
well supported by experimental data (Brebner and Donnelly 1962). A somewhat 
surprising result refers to the effect of the bench width on the rubble base stability. 
The plots indicate an increase in stability with decreasing the bench width. This is 
observed for both analyzed rubble base heights. 

The local minimum of the stability number in very shallow water was reported 
by Sulisz and McDougal (1991), who presented the stability number versus the 
dimensionless wave number based on a constant value of the damping coefficient. 
Since the damping coefficient is a function of wave frequency, the calculations 
based on a constant value of the damping coefficient usually, as is pointed out 
above, underestimate media damping properties in shallow water, or overestimate 
them at intermediate depths and in deep water. Further calculations conducted by 
applying the present approach with/= constant, confirm an occurrence of the local 
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Fig. 4. Stability number versus kh; dlh = 0.8,/= 1, •••• Hlh = 0.1, --Hlh = 0.2, 
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minimum in very shallow water for rubble bases of small damping properties, 
however, this local minimum does not occur for rubble bases of significant 
damping properties as is shown in Fig. (5). 
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Fig. 5. Stability number versus kh; dlh = 0.6, c/h = 0.2, Hlh = 0.1,•• ••/= 1, 
--/=10 

The results presented in Fig. (5) also show the importance of the rubble base 
damping properties for the stability of the rubble bases. Several conclusions may 
be drawn from the results presented in Fig. (5). A preliminary analysis indicates 
that if the damping property of the analyzed rubble base decreases, the minimum 
stability number increases. It has already been pointed out that in a case of a pure 
Darcy flow, the coefficient/is directly related to the Darcy coefficient. The results 
in Fig. (5) indicate that for a pure Darcy flow in the analyzed rubble base, the 
stability of the rubble base increases with increasing its permeability. This 
conclusion is drawn on a base of the minimum stability number at intermediate 
depths which is our main interest. An opposite conclusion may be drawn in very 
shallow water. Additionally, the results indicate the importance of the nonlinear 
damping term included in the present approach in Eq. (lc) for the stability analysis. 
The analysis shows that this term is of relatively minor importance for the 
minimum stability number associated with intermediate depths, but may be of 
major importance in shallow water. 

CONCLUSIONS 

A theoretical analysis of the stability of rubble bases is conducted, applying an 
approach based on numerical modelling. The flow in the rubble base of a caisson- 
type breakwater is described by a linearized Forchheimer equation of motion. The 
boundary element method is applied to solve the problem of wave interaction with 
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the caisson and its rubble base, and to calculate the velocity field. The predicted 
velocities are used in a Morison-type equation to determine the destabilizing forces 
on individual stones. 

The stability is shown to depend on several parameters. There are three or even 
four groups of parameters involved in the stability analysis. The detailed analysis 
is conducted to investigate the parameters associated with incident wave properties 
and rubble base shapes. Preliminarily examined are some parameters associated 
with hydraulic properties of the rubble base. 

The incident wave properties are shown to be essential to predict the stability 
number. Theoretical results reveal two local minima in stability: a local minimum 
in very shallow water and a local minimum at intermediate depths, but in some 
cases additional minima may occur. The local minimum at intermediate depths is 
usually becoming a global minimum. The stability, as intuitively expected, is also 
a function of the incident wave height and the stability increases with decreasing 
wave height. The rubble base shape belongs to the second group of parameters 
involved in the stability. The results show that the stability increases with 
decreasing rubble base height and the bench width. The preliminary results indicate 
the necessity of including damping properties in the stability analysis and show that 
for the analyzed rubble base the minimum stability number increases with 
increasing permeability. 
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