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ON BEACHES 

Ashwini Otta1, lb A. Svendsen2, and S. T. Grilli3 

ABSTRACT 

A high accuracy boundary element method is used to compute the propaga- 
tion of solitary waves from a constant depth region onto a plane slope. Initial 
wave heights range from H/h = 0.06 to 0.775, slopes between 1:35 and 1:1.73 
(30°) have been investigated. The prebreaking shoaling shows very different 
characteristics on gentle slopes (1:20 and less) and on steeper slopes. 

A diagram constructed on the basis of a large number of numerical experi- 
ments gives a simple limit between which waves break on which slopes and which 
not. Typical examples of the range of wave behavior are shown. Waves that do 
not break at run up often break during run down. The velocity fields for the 
two types of breaking are compared and found to be very different. A simple 
explanation for this is offered. 

1. INTRODUCTION 

The shoaling, run-up and breaking of solitary waves is of interest in connec- 
tion with the analysis of the behavior of tsunamis in coastal regions. 

A significant amount of literature has been published which analyses long 
wave propagation on slopes using the non-linear shallow water (NSW) equations 
or Boussinesq approximations. Thus, analytic solutions to periodic problems 
were obtained by Carrier & Greenspan (1958), Carrier (1966) and to the solitary 
wave problem by Synolakis (1987). Numerical solutions have been developed 
by Hibberd and Peregrine (1979), Pedersen k Gjevik (1983), and Zelt (1991). 
Furthermore, Kim et al. (1983) used a boundary integral formulation to analyze 
the problem. Experimental results for run-up were obtained by Ippen & Kulin 
(1954), Camfield & Street (1969) and recently, by Synolakis (1987). In particular 
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Synolakis, comparing results from the NSW equations with experimental run- 
up, finds some deviations in the surface profiles in the final stages when the 
waves get steep. Papanicolaou & Raichlen (1987) give a few results for breaker 
heights on very gentle slopes (< 1:50). Finally, Svendsen & Grilli (1990) found 
using a high accuracy boundary element method (BEM) that when solitary 
waves of steepness up to 0.50 run-up on a relatively steep slope, the velocity 
profiles would differ quite significantly from the depth uniform velocity which 
is intimately linked with the NSW-equations. Similarly, the run-up of non- 
breaking waves, while in accordance with experimental results, would differ from 
the NSW predictions by as much as 75%. 

Synolakis also developed a criterion for whether the waves would eventually 
break during the run-up and concluded that as the slope angle becomes small, 
the theory is only valid for small H/h whereas for steep beaches, he estimated 
the theory would be valid for relatively large H/h. 

In the present paper we apply the version of the BEM method developed by 
Otta, Svendsen & Grilli (1992) to analyze the development of solitary waves on 
beaches. The wave heights initially (on the constant depth region in front of the 
slope) have height to depth ratios H/h from a moderate 0.10 to 0.775, the latter 
being almost equal to the steepest stable solitary wave on a horizontal bottom. 
The beach slopes are between 1.35 and 1/1.73 (30°). Both the shoaling behavior 
and the question of whether the waves break (and how) are addressed. 

2. PROBLEM FORMULATION 

The situation considered is described in Fig. 1. Solitary waves generated 
with initial height H0 in a region of constant depth h0 propagate towards a 
plane beach with slope angle s. Hence the only independent parameters of the 
problem are H0/ho and s. The motion is assumed irrotational and hence can be 
described by a velocity potential cj>. Hence the velocity field v is given as 

z/h 

-1.5 
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Figure 1: Definition Sketch 
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v = S74> (1) 

and in the entire flow region </> satisfies the Laplace equation 

V2</> = 0 (2) 

subject to the boundary conditions 

—— = 0   at the bottom z = —h0(x) (3) 
on 

D<f> 1. 

Dt >I2-OT (4) 
at the free surface z = rj(x, t) 

(5) 

where D/Dt = d/dt + (v • V) represents the total derivative following a fluid 
particle. The geometrical quantities are shown in Fig. 1 and we have assumed 
a constant pressure along the surface. 

To achieve the necessary accuracy in the computations, the solitary waves 
are generated initially by a method described by Tanaka (1986). At t = 0, we 
assume such a wave present in the computational wave tank with crest suffi- 
ciently far from the toe of the beach to be essentially undisturbed by the beach. 
Similarly, the seaward boundary is placed sufficiently far away not to disturb 
the computations with its reflection. 

3. METHOD OF SOLUTION 

The exact equations described in section 2 are solved by transforming the 
Laplace equation (2) into a Boundary Integral Equation which reads 

a(x,t)4>(Z,t) = /rgG(x,x0) - ^(x0)
gG(^Xo)rfr(x0) (6) 

F represents the (closed) boundary of the computational domain given by the 
bottom and slope, the entire free surface and the seaward boundary (see Fig. 
1). x and x0 indicate points on the boundary curve, x0 being the point with 
respect to which the integral is performed. A free space Greens function is used 
for G(x, x0). (6) is an exact representation of the original equation (2) which 
was exact too. 

The solution of (6) at each time step is found numerically at modal points 
on the boundary. These nodes divide the boundary T into M segments Tj each 
spanning over an element. Thus, (6) can be written 

a(x, *Mx, t) = Y, I  ^(x, x0)/rfr - W   ^(x0 
3=1 Jri °n 1=1 Jri 

_ ,9G(x, x0) 
dT     (7) 
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which is still exact. Hence, the solution is reduced to the question of expressing 
the two types of integrals in (7) in terms of <j> and -^ at the nodes. 

The details of this technique, which also includes upgrading to the next time 
step the boundary values of <j> and d<f)/dn at each point using the boundary 
conditions (3) and (4) are described by Grilli et al. (1989), Grilli & Svendsen 
(1990a,b). 

The approach used for the computations reported here differ from previous 
versions of the method in the way the derivatives along the boundary and inte- 
grals in (7) have been computed. A third order polynomial based on four nodes 
has been used, centrally positioned around each interval (termed midinterval 
approximation). 

This turns out to yield a substantial improvement in accuracy over the spline 
approximations used earlier. Fig. 2 shows a comparison of results for H/h and 
the maximum error in the normal velocity d</>/dn for the propagation of a very 
steep solitary wave (H/h = 0.775) on a horizontal bottom. This is close to 
highest wave of H/h = 0.78 that remains stable according to Tanaka (1986). 

Ideally, we should expect each of the quantities in these computations to stay 
constant during the propagation. Initially, however, the wave undergoes minor 
changes before settling down to a largely constant value. These adjustments are 
caused by the fact that the numerical representation of the wave in our compu- 
tations is based on different node position and also uses interpolation between 
nodes that differ (slightly) from the interpolation used in the computation of 
the initial wave (at t = 0) by Tanaka's method. 

In all, however, the constancy of the parameters in Fig. 2 shows the substan- 
tial improvement over previous versions of the method, which were not quite 
able to cover the propagation of waves with heights so close to the maximum 
stable wave height. The figure represents propagation over approximately 30 
water depths. 

4. SHOALING OF SOLITARY WAVES 

The tool thus developed has been used for numerical experiments with the 
shoaling and breaking of solitary waves on beaches with slopes varying from 
1/35 to approximately 1/2. 

Fig. 3 shows computations on a slope of 1/35 of waves with steepness between 
0.10 and 0.40. The local value of H/h on the slope is plotted against x/h0, the 
distance from the initial position of the wave crest. 

The variation is essentially the same for all value of H/h and all waves in 
the figure end up breaking. Noticeable is the fact that the value of H/h at the 
breaking point almost independent of the initial height of the wave. The smaller 
waves just travel to smaller depths before they break. This pattern was already 
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0.77-1 

Figure 2: Accuracy of Computations for Very Steep Solitary Wave (H/H = 
0.775) on a Constant Depth. 1) Quasi-spline interpolation. 2) Cubic mid- 
interval approximation. 

25        30        35        40 

Figure 3:   Shoaling of Solitary Waves of Different Initial Height H0/h0, on a 
slope 1/35. H/h on the Slope versus x/h0. Slope Starts at x/h0 = 25. 
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log(H/H ) 

-log (h/hj 
Figure 4: Shoaling of Solitary Waves of Different HB/hB on Different Slopes. 

observed experimentally by Ippen & Kulin (1954). It is also worth noticing that 
the H/h value of breaking for all the waves is 1.35-1.45, i.e., dramatically above 
the height 0.78 or 0.8 of the highest stable wave. The reason for this is of course 
that the (in)stability of a high symmetrical wave on a constant depth has little 
to do with unsymmetrical deformation to breaking of a wave on a gradually 
decreasing water depth. 

The absolute change in the height of the waves can not be deduced from Fig. 
3. Fig. 4, however, shows the variation of wave height H relative to the original 
height H0. This figure also includes a sample of results for a number of steeper 
slopes (1/20, 1/8.25, 1/6.5). We observe in this figure a substantial difference in 
the behavior on different slopes of waves initially of the same height. Whereas 
the waves on a 1/35 slope studied in the previous figure increase in height by 
generally a factor of 2 (logH/H0 ~ 0.3), the same waves on the steeper slope 
of 1/8.25 or 1/6.5 propagate on the slope essentially without change in absolute 
height. It even turns out that on a slope with steepness 1/6.5, only the initially 
steepest of those waves reach breaking (see below). 

The figure also shows that non of the two theoretical laws proposed in the 
literature for the variation of the height of shoaling long waves are particularly 
satisfactory. Green's law H oc h~i (represented by line G in Fig. 4) clearly 
has some merit during the initial stages of waves on the slope of 1/35 as one 
should expect from its derivation based on small amplitude waves on gentle 
slopes. More surprising perhaps is that the relation H oc h~x predicted by the 
Boussinesq theory (line B in Fig. 4) can be said to approximate the later part 
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of the wave height development towards breaking as judged from the fact that 
H/H0 curves for waves on a 1/35 slope have the same slope in that region. These 
features were discussed by Synolakis (1991) on the basis of experimental results. 
On the steeper slopes, however, even 1/20, none on these laws will apparently 
provide accurate predictions for the wave height variations. In fact, the steepest 
wave of 0.40 (curve g) on a 1/6.5 slope even decreases slightly in height as it 
climbs the slope. 

5. WAVE BREAKING ON SLOPES 

Variation with slope angle and wave height 

The second problem addressed in the present paper is the question of which 
waves break on which slopes. 

Fig. 5 shows the propagation of the same wave, a very steep solitary wave 
with initial height H0/h0 = 0.75, on three different slopes, 30°, 7.12° (1/8), 3.81° 
(1/15). The three figures illustrate the range of behavior described in section 4, 
and we particularly see that even a wave initially close to the maximum stable 
steepness does not break if the slope is too steep. It turns out that a wave of 
nearly maximum steepness will only break if the slope angle is smaller 1:4. 

We also see the radical difference between the behavior of the same wave on 
a 30° and a 7.12° slope. Where the crest in the first case essentially rushes up 
the slope with a total runup of close to three times the initial wave height the 
wave on a 7.12° slope hardly changes height at all and mainly undergoes a rapid 
deformation that ends with breaking. 

On a 7.12° slope, the front of the wave becomes an almost vertical wall at the 
point of breaking and the breaking occurs violently as the entire wall tumbles 
over. On the gentler slope of 3.81° the wave breaking is a classical plunging 
breaker although the size of the jet is relatively small. 

In Fig. 6 is shown the influence (or lack of influence) of wave height on the 
breaking on a fairly gentle slope (3.81°). Each of the four waves with initial 
heights of H0/h0 = 0.3, 0.45, 0.6 and 0.7 have shapes at the point of breaking 
that virtually are scaled versions of the others. Only the height to depth ratios 
H/h are slightly different as indicated in section 4 with the smaller wave reaching 
the largest H/h-value before it breaks. 

Breaking criterion 

Based on a sufficient number of such calculations as numerical experiments, 
we are then able to construct the diagram shown in Fig. 7 which shows which 
waves break, which do not. The axes are logl/s, (s = hx being the slope) and 
log(iJ0//i0), H0 the original wave height on the constant depth h0. The full 
line in the diagram separates the waves that break before or during run-up on 
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*A0 
Figure 5: The Breaking of the Same Wave (H0/ho = 0.75) on Three Different 
Slopes: a) 30°, b) 7.18° (1:8), c) 3.81° (1:15). 

Figure 6: Breaking of Four Different Waves (H0/h0 = 0.3, 0.45, 0.6 and 0.7) on 
the Same (relatively gentle) Slope 3.81° (1:15). 
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a given slope. We see that the line indicates that waves with 

"   >8As15'9 (8) 
h0 

will break sometime during run-up on a slope. 

The question of which waves break on a slope was also addressed by Synolakis 
(1987). Using the non-linear shallow water equations (NSW), he found that 
waves would eventually break on the slope if H0/h0 > 0.82510/9. This criterion 
is indicated by the dashed line in Fig. 7. 

We see that only for waves initially of noticeable steepness the NSW equa- 
tions predict, that much smaller waves will break, than is found by the present 
more accurate method. Since run-up is greatly reduced if the waves break, this 
will also result in the NSW equations predicting much less run-up for the class 
of waves that actually do not break. 

It could be argued that for waves initially of very small height (such as 
Tsunamis), the extrapolation of the two lines in the figure will meet. This 
happens for H0/h0 = 0.0078 (corresponding to a = 0.015), so that for that set 
of parameter values, the two methods give the same limit for which waves break 
and which do not. 

However, in the first place it is not clear in advance that the formula (8) can 
be extrapolated to such small values of Ho/h0. We have not at the present time 
performed any numerical experiments with so small wave heights on such gentle 
slopes. 

Secondly, even such small waves will become quite steep when they approach 
breaking. The fact that the NSW equations fail to correctly predict breaking of 
the initially steeper waves may indicate that their prediction of the behavior of 
waves close to breaking is generally deficient, no matter how those waves start 
out. This would be in accordance with the general knowledge that near breaking 
the deviations from the hydrostatic pressure imbedded in the NSW equations is 
important. 

Surging breakers 

One of the interesting phenomena to look for in the numerical experiments 
is what happens to the waves that almost break, or only just break. Those are 
the waves around the full line in Fig. 7. If they break, this would presumably 
correspond to a so-called surging breaker. Fig. 8 shows computations for very 
steep waves on a slope of 1/4. The initial wave heights are 0.65, 0.68 and 0.75, 
and according to Fig. 7 these waves should not break but, particularly the 0.75 
case should be very close to breaking. The figure is undistorted in scales so we 
can judge the development. 

We notice that these waves show all the characteristics found from experi- 
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Figure 7: Wave Breaking Criterion 
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Figure 8: Waves Close to a Surging Breaking 
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ments for surging breakers. The front, with no water ahead of it, steepens to 
about 75° and the steepest surface slope is at very bottom of the front. At a cer- 
tain point, the steepness stops, however, and the toe of the front shoots forward 
into a run- up while the wave crest behind collapses. Clearly, a very significant 
part of the potential energy plus the kinetic energy built into the wave crest 
at the instant of maximum slope is transferred into kinetic energy causing the 
run-up. 

Though we have not tested this through more extensive experiments, we 
would expect this pattern to apply for a wide range of wave/slope combinations 
along the line given by (8). The question remains open however, how gentle the 
slope can be and how nearly breaking waves behave on really gentle slopes such 
as 1/50. 

Wave breaking in the backwash 

It turns out that waves that do not break during run-up may still do so 
during run-down. This was already seen in the computations on steep slopes by 
Svendsen & Grilli (1990) and Grilli & Svendsen (1991) who also described the 
velocity fields. 

Fig. 9 shows an example of the breaking of a wave during run-down. At the 
period following maximum run-up (approximately position 1), the water starts 
rushing down the slope at rapidly increasing speed. The water level nearly 
parallel to the bottom indicates the acceleration is close to g sin a where a is the 
slope angle. Close to the slope, the water level drops well below undisturbed 
SWL while staying well above SWL a little further out. This creates a front, as of 
a new incoming wave, which rapidly breaks shoreward. The whole sequence, in 
particular the breaking, takes place so swiftly that under laboratory conditions 
it can hardly be followed with the naked eye. After the breaking, the SWL is 
restored at the shoreline while smaller reflected wave propagates away. This 
phase can only be reproduced by the present method when the wave does not 
reach breaking in the downrush. 

It is worth noticing that although it looks like the down-wash breaking is 
equivalent to a new incoming wave front, the velocity field in this breaker is 
radically different from the velocity field in an ordinary shoreward propagating 
breaker. Pig. 10 shows a comparison between the two situations. It seems 
that due to the strong downward water flow on the slope meeting the backward 
breaker, this wave is held in an almost stationary position while it turns over. 
The strong outward going particle velocities confirms this impression. 

6. CONCLUSION 

Summarizing the results described, we conclude that 

• The wave height variation of solitary waves shoaling on plane slopes de- 
pends far more radically on the slope than on the initial wave steepness. 
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Figure 9: Breaking During Run Down. 
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Figure 10: Velocity Profiles Under Forward & Backward Breaking Waves. 
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On gentle slopes (< 1:20), the wave height grows monotonously, slowly at 
first, towards breaking nearly as ft-1. 

On steeper slopes, the wave height stays almost constant over the slope. 

• For all slopes investigated (1:35 being the gentlest), the wave height to 
water depth ratio at breaking is well above the limit of approximately 0.78 
of the steepest stable wave on constant depth. For the moderately steeper 
slopes, the waves may break even at the shoreline (and the value of H/h 
then is infinite). 

• No waves that can propagate stably on a constant depth break on slopes 
steeper than 12°. 

• Waves that do not break during run up may still generate a (backward) 
wave breaking during run down. The velocity field in such a breaking is 
very different from the breaking of a progressive wave. It resembles the 
velocity field of a (second) shoreward moving wave which is arrested by 
the downrush. The wave deforms to breaking without propagating. 
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