
CHAPTER 100 

VERTICAL WAVE BARRIERS: WAVE TRANSMISSION AND WAVE FORCES 

David L. Kriebel1 

ABSTRACT 

Wave interaction with a vertical slotted wave barrier, also called a wave 
screen or slit-type breakwater, is considered. A theoretical analysis is presented 
based on application of the continuity, momentum, and energy equations to flow 
through the slots in the breakwater, accounting for head losses associated with 
flow constriction and re-expansion. As a result, relatively simple expressions are 
found for the wave transmission coefficient and for the wave forces on the wall. 
These are then verified by laboratory experiments with regular waves. 

INTRODUCTION 

Vertical-wall breakwaters are sometimes used to protect marinas and 
small boat harbors from both wind waves and boat wakes. These breakwaters 
encompass a variety of structures and have many names in the literature, 
including wave barriers, wave screens, and even wave "fences". In the 
Chesapeake Bay and other locations in the United States, these structures are 
most often built from marine lumber in the form of vertically-slotted walls 
extending to either full or mid-depth. Despite the growing use of such structures, 
however, relatively little comprehensive design information is available on either 
their wave transmission characteristics or on the wave forces that they would 
experience. As a result, these breakwaters have performed poorly in some 
instances, since even small gap spaces between the wall members allows a 
significant transmission of wave energy. 
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A definition sketch showing the plan-view of a slotted or slit-type vertical 
wave barrier with rectangular wall elements is shown in Figure 1. The primary 
variable defining the structure permeability is the porosity of the cross-section, 
P, defined as the ratio of the gap space, s, to the centerline-to-centerline spacing 
of the wall elements, s+b. Assuming that the wall is subjected to plane long- 
crested waves of height H{ with crests parallel to the wall, it is then of interest 
to describe the transmission coefficient, Kt =HJH{, and the reflection coefficient, 
K^HjHp in terms of the porosity and in terms of the relative water depth and 
wave steepness. In addition, it is of interest to describe the wave force on one 
wall element, F, in either the positive or negative directions. 

P = s/(s+b) 

Kr 

-}t- 

Kt 

(a) (b) 

Figure 1. Definition sketch showing plan view of: 
(a) wall cross-section and (b) detail of flow through breakwater gap. 

Vertical slotted or slit-type wave barriers have been actively studied for 
more than thirty years. Wiegel (1961), for example, estimated the transmission 
coefficient by assuming that the transmitted wave energy flux over width s + b was 
equal to that portion of the incident wave energy flux passing through the gap 
over width s. Asa result, a simple expression for transmission was proposed as 
Kt=P1/2. It is known, however, that this approach underestimates the transmission 
because it neglects the effects of wave reflection. In actuality, the pressure 
gradient across the wall is increased by the presence of the reflected wave and 
this drives more flow through the gap than is accounted for in Wiegel's method. 
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Recent analyses of these slit-type vertical wave barriers have been made 
using a variety of more complete analytical techniques. The most advanced 
solutions are based on potential flow methods and examples include the works 
of Kakuno (1983), Kojima et al. (1988), and Fugazza and Natale (1992). In these 
methods, the velocity potentials are found for the linear incident and reflected 
waves by applying both far field boundary conditions and matching conditions at 
the wall boundary. While solutions have been obtained for the wave transmission 
coefficient based on this approach, results have not been presented for the wave 
forces on the wall. 

In contrast, simpler solutions based on fundamental hydraulics principles 
have also been proposed by Hayashi et al. (1966), Hayashi et al. (1968), Mei et 
al. (1974), Kondo (1979), and Urashima et al. (1986). These methods, also 
summarized by Mei (1983), have been developed for shallow water waves where 
wave pressures are hydrostatic and where flow velocities are uniform over depth. 
As a result, the equations for conservation of mass, momentum, and energy may 
be applied directly in two-dimensions in order to find the wave transmission 
coefficient. In most of these cases, solutions are also presented for the wave 
forces imparted on the wall by shallow water waves. 

In the present paper, a hydraulic model similar to that of Hayashi et al. 
(1966) and Mei et al. (1974) is proposed for conditions of arbitrary water depth. 
It is assumed that both the wave transmission and wave forces are determined 
primarily by the strong horizontal fluid velocities that are driven through the 
breakwater gaps by the large pressure gradients that occur over the width of the 
wall. These maximum pressure gradients, and the associated maximum horizontal 
velocities, are largest during both the crest and trough phases of the wave. 
Because of this, it is assumed that the conservation equations can be applied first 
in horizontal layers and then depth-integrated to obtain the total wave 
transmission or the total wave force. Experimental verification of this simplified 
hydraulic theory is then presented based on recent laboratory experiments 
conducted at the U.S. Naval Academy. 

SIMPLIFIED HYDRAULIC THEORY 

Consider the flow between two streamlines located along the centerline 
of adjacent wall elements and separated by width s + b as shown in Figure lb. 
Conservation of mass requires the net discharge to be identical at each of the 
three sections shown in Figure lb. As a result, the velocities at each of the three 
sections are related as: 

u. + u-CPV-u, (1) 
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where Vc is the velocity in the contraction and where Cc is the contraction 
coefficient, taken as CC=0.6+0.4P3 following Mei (1983). Based on linear wave 
theory, the velocities at the wave crest phase may then be given by 

H. H H ,~. 
u, - Q—lu        ur - -o—Zu        u, - a-^Zu (2) 

'        2   u 2 '2 

where Zu = cosh(kh+kz)/sinh(kh), k is the wave number, h is the water depth, 
and a is the wave frequency. Because all velocities oscillate in time as cos(ot), 
the wave heights are then related as 

Hi -Hr-Ht (3) 

and the reflection and transmission coefficients are related as 

K-l-K, (4) 

Application of the momentum and energy equations then allows the 
pressure gradient across the wall to be determined. The momentum equation, 
applied between sections 2 and 3 in Figure lb, is first used to find the pressure 
in the contraction in terms of the transmitted wave pressure and velocity. The 
energy equation, applied from section 1 to 2, is then used to relate the incident 
and reflected pressures to the pressure in the contraction. Combining these 
expressions, and using equation (1), finally yields the pressure drop across the 
wall as 

P^Pr-pt = {-~-lf\?u2
t (5) 

The right-hand-side of equation (5) represents the head loss through the gap as 
a quadratic function of the transmitted wave velocity. Following the method of 
equivalent linearization, e.g. Mei (1983), this may then be approximated as 

Pi +Pr~Pt- KWSS •=- P Um U, <6> in 

where utm is the magnitude of the transmitted wave velocity and where i^LOss is 

the head loss coefficient. This is given as ^"LOSS=((7/CcP)-l)2 based on the flow 
constriction and expansion but will be modified later to account for other effects. 
As a result of the linearization, the velocities and pressures in equation (6) may 
be given by linear wave theory but the head loss on the right-hand-side will still 
retain a nonlinear effect of wave steepness. 



VERTICAL WAVE BARRIERS 1317 

SOLUTION FOR WAVE TRANSMISSION 

The results presented above may now be extended into three dimensions 
to allow for variable pressures and velocities over the water depth, and to 
determine the overall transmission coefficient. Referring to Figure 2, it is first 
assumed that equation (6) models the pressure drop across the wall in any 
horizontal layer. It is further assumed that the dynamic pressures at any elevation 
are given by linear wave theory as 

Pi " 98-+Z, 5 
2' P, (7) 

where Z = cosh(kh+kz)/cosh(kh). Substitution of these expressions into equation 
(6), making use of equations (2) and (3), and integrating over depth then gives 
the following expression for wave transmission 

pg Ht (1-K) /° Zp dz - Kws± p o2 H) K) f°h Z
2

H dz (8) 

The vertical integrations in this expression, from the seafloor z = -h to the still 
water level z=0, are consistent with linear wave theory and account for the 
variable head losses over depth. As may be seen in Figure 2, the head losses are 
much larger near the surface than at the seafloor. It is also noted that by 
integrating to Z=0, the head losses are assumed to be identical during both the 
crest and trough phases. 

Hi + Hr 

Pi+Pr ut 

V/ /\\ 77 / / \/      /\\\ 

Figure 2. Illustration of vertical distribution of pressure and velocity. 
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Carrying out the operations in equation (8) ultimately yields a simple 
quadratic equation for the wave transmission coefficient as 

T, K2
t + Kt - 1 - 0 (9) 

where the variable Tt may be termed the transmission function and is equal to 

T - K       — — s*nh2M+2feft (10) 
6   L       smh2kh 

The solution for wave transmission in arbitrary water depth is then found to have 
a form similar to that given by Mei (1983) in shallow water as 

_  -1,(1*47?* (n) 

' 27; 

The solution £orKt in equations (10) and (11) contains the effects of both 
the relative water depth and the wave steepness, in addition to the breakwater 
porosity as reflected in the head loss coefficient. Figure 3 shows the variation in 
Kt as a function of porosity and relative depth for a fixed value of wave 
steepness. This shows that transmission is lower in shallow water than in deep 
water, because of the uniform velocities and therefore larger head losses over 
depth in shallow water. In addition, the transmission is essentially equal to that 
in deep water once h/L > 0.3 or so. Figure 4 then shows the variation with wave 
steepness for deep water conditions. This illustrates that the head losses increase, 
and that the transmission decreases, for waves of higher steepness. 

The functional dependencies on wave steepness and porosity may be 
displayed more clearly by considering deep water conditions, consistent with the 
experimental phase of this study, where Tt=KLOSSHi/3L0 and where LQ is the 
deep water wavelength. As shown by Mei (1983, p. 263), the solution for wave 
transmission may be simplified based on series expansions of equation (11). For 
small amplitude waves or large gap spaces (small values of Tt), it is found that 

K, -1 - T, -1 - *io4r (12) 

On the other extreme, for large amplitude waves and narrow gap spaces (large 
values of Tt), it may be shown that 

«,- 
1/2 

3    L.) 

^LOSS "i 

1/2 
(13) 
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Figure 3. Example of wave transmission as a function of relative depth. 
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Figure 4. Example of wave transmission as a function of wave steepness. 
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SOLUTION FOR WAVE FORCES 

The wave force per unit length on one wall element,/, may be determined 
by applying the momentum equation from section 1 to 2 as shown in Figure lb. 
Wave forces are then found from the differences in the specific forces on either 
side of the wall, assuming that the pressure in the contraction is impressed over 
the wake behind the wall. In water of arbitrary depth, this is applied to each 
fluid layer and the force per unit length is found to vary as 

/ - (P,+P,-P) (s+b) ' P8 Hi V~K) ZP (*+fo) <14> 

Depth integration from the seafloor to the still water surface, consistent with 
linear wave theory, then gives the total force on one wall element, F, as 

F - pg —'- tanh(kh) (l-K) (s+b) (15> 

This expression is similar to the force exerted by linear standing waves on a solid 
wall of width b, denoted by F0 and given by 

Fo- pg-i twh(kh) b (16) 

As a result, the normalized force on one wall element of a slotted or slit- 
type vertical wave barrier may be expressed in the form 

— '- - (1 - JQ(1 + P) (17) 
F       1 - P ' o 

where P is the wall porosity. According to equation (4), it is also found that the 
forces are directly proportional to the wave reflection coefficient. The maximum 
wave force reduces to the usual solution for linear standing waves when the wall 
porosity and the transmission coefficient approach zero. In general, however, the 
force on a permeable wall depends on the wall porosity, the relative depth, and 
the wave steepness, due to the dependence of the transmission coefficient on 
these parameters. 

In the experimental phase of this study, wave forces were measured on 
walls with large gap spaces in some tests; and, in fact, some tests were performed 
on a single rectangular wall element placed in the center of the wave tank such 
that the porosity was essentially equal to unity. Under this extreme condition, the 
force on the wall element predicted by equation (17) is equal to zero. However, 
non-zero forces were measured and these measured forces were, as expected, 
well-represented by the Morison equation as the sum of drag and inertia forces. 
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Therefore, two empirical modifications of equation (17) were introduced. 
First, the inertia force on a rectangular wall element was included so that the 
total force on the wall was actually modelled as 

— - (l-JQCl+F) cosof - itCj-K, sinof (18) 
Fo L 

where t is the wall thickness and Cm is the inertia coefficient, assumed to equal 
Cm = 1 + 0.3257rb/t or 4.06 for rectangular members with a width-to-thickness ratio 
of 3 as used in this study. In addition, the head loss coefficient was modified as 

Kwss - ^CD + (-^ - l)2 (19) 
c 

where CD is the viscous drag coefficient on a single rectangular element, 
assumed to equal two in this work. As the porosity approaches unity, the second 
term in equation (19) goes to zero and the first term then leads to the same drag 
force as would be found from the Morison equation, as may be shown based on 
the series expansion introduced in equation (12). On the other hand, as the 
porosity approaches zero, the second term governs and may be an order-of- 
magnitude larger than the first term. 

EXPERIMENTAL VERIFICATION 

Verification of the theoretical results is based on physical model tests 
conducted at the United States Naval Academy Hydromechanics Laboratory in 
a wave tank 36.6 m long, 2.4 m wide, and 1.55 m deep, equipped with a flap-type 
wavemaker. A full-depth vertical wave barrier was constructed of wooden wall 
elements having a width, b = 7.62 cm, and a thickness, t = 2.54 cm. Five gap 
spacings were then tested, with.? = 0.84,1.27, 2.54, 3.81, and 7.62 cm. Single wall 
members were also tested. As a result, data is available for wall porosities P of 
0.10, 0.14, 0.25, 0.33, 0.50, and 0.97. 

Test were conducted using regular waves with four different wave 
frequencies, three of which produced deep water waves with h/L > 0.5. Deep 
water waves were considered here because many wave barriers are constructed 
in or adjacent to marinas or navigation channels where they are subjected to 
short-period wind waves or boat waves that are actually in deep water relative 
to their wavelength. At each frequency, up to three values of wave height were 
tested producing values of wave steepness of H/L = 1/40, 1/20, and 1/15. 
Incident and transmitted waves were measured with fixed wave gages located 
near the wavemaker and 1 to 3 m behind the wall respectively. Wave forces were 
measured by attaching one of the vertical wall members, manufactured out of 
aluminum to provide additional stiffness, to a force gage. 



1322 COASTAL ENGINEERING 1992 

EXPERIMENTAL RESULTS 

Examples of theoretical and experimental results for deep-water regular 
wave transmission are shown in Figure 5. In Figure 5a, transmission coefficients 
are shown for each of the four wave frequencies tested for a constant wave 
steepness of 1/40. Figures 5b and 5c show similar results for a constant wave 
steepness of 1/20 and 1/15 respectively, although only three wave frequencies 
were actually tested at the higher steepness due to wavemaker limitations. As 
can be seen, the theory provides reasonable predictions of the transmission at all 
values of wall porosity and at all three values of wave steepness. In general, 
there was no discernable dependence in the data on wave frequency at a given 
value of porosity, consistent with the theoretical predictions. In addition, despite 
the linearizing assumptions made in the theory, predictions are quite good even 
for the higher wave steepness. One notable aspect of these results, however, is 
that for low steepness waves in deep water, wave transmission may be as high as 
70 or 80 percent even for wall porosities of just 0.15 to 0.25. 

Typical results for wave forces on the instrumented vertical wall element 
are shown in Figure 6. Figure 6a shows results for a wave steepness of 1/40 
while Figure 6b shows results for a steepness of 1/20. Measured forces reported 
here are actually the average of the positive and negative maximum forces, since 
the linear theory does not distinguish between force magnitudes at the crest or 
trough phase of the incident wave. The forces are then given in dimensionless 
form as the average measured force divided by the force predicted by linear 
standing wave theory. One result of this normalization, however, is that results 
differ for each wave frequency as porosity increases so that forces at different 
relative depths do not collapse to a single curve. 

In Figure 6, it may be seen that the simplified hydraulic theory provides 
a reasonable estimate of measured forces for all values of porosity and for both 
values of wave steepness. Interesting features of the force predictions are that: 
(1) for very low values of porosity, predicted forces are mostly independent of 
relative depth and collapse to a single curve and that (2) once porosity exceeds 
about 0.5, dimensionless forces are nearly constant but differs for each relative 
depth. Reasons for this behavior may be seen in equation (18). At small values 
of porosity, the first term in equation (18) governs and, since the transmission 
coefficient is not a function of relative depth for these deep water conditions, the 
predicted dimensionless force is therefore the same for all frequencies tested. On 
the other hand, as the porosity becomes large, the second term in equation (18) 
governs and leads to a dependence of the dimensionless force on the wall 
thickness-to-wavelength ratio. It is noted that there is more scatter in the force 
data at the lower wave steepness since the measured forces for some of these 
conditions, particularly for h/L = 1.20, were very small and influenced by the 
sensitivity of the force gage 
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Figure 5. Comparison of measured and predicted deep water wave transmission, 
(a) H/L = 1/40 and (b) H/L = 1/20, and (c) H/L = 1/15. 
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Figure 6. Comparison of measured and predicted deep water wave forces: 
(a) H/L = 1/40 and (b) H/L = 1/20. 

Some tests were also performed with random waves; however, space 
limitations prevent a complete discussion of these results. In general, it was 
found that the simplified hydraulic theory worked well for random wave 
transmission and wave forces when the significant wave height and peak wave 
period were used to characterize the random sea. As a single parameter, the 
significant wave height seemed to characterize the random sea better than the 
root-mean-square wave height. Apparently, the significant height gives a larger 
overall head loss that more closely approximates the actual head losses of the 
larger waves in a random sea. 
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CONCLUSIONS 

Methods presented in this paper allow a straightforward calculation of 
wave transmission and wave forces for a vertical slotted or slit-type wave barrier. 
As shown by both theory and experimental data, wave transmission decreases as 
the wave steepness increases and as the porosity decreases. However, wave 
forces increase under these same conditions. As a result, wave transmission can 
be decreased only at the expense of a large increase in the wave force on the 
wall. This trade-off between wave transmission and wave forces often leads to 
wall designs that are too porous and allow too much wave transmission in order 
to be economical to construct, particularly if the wall is to be attached to an 
existing pier as is often the case. 

Under the assumption that both high wave transmission and high wave 
reflection are undesirable near marinas or entrance channels, the wall porosity 
associated with the maximum energy dissipation may be found. Based on an 
energy balance, the dissipated wave energy will equal 

EBBS-El-Et-Er-lEtKl(X-K) (20) 

where equation (4) has been used to related Kc to Kt. As a result, it is found that 
the maximum wave energy dissipation occurs when Kt = 0.5. For values of wave 
steepness considered in this paper, and for deep water waves, this requires wall 
porosities in the range of 0.09 to 0.17 to maximize the energy dissipation. Based 
on constructed vertical wave barriers that the author has visited, porosities are 
generally larger than this by a factor of two or even three in some cases. Thus, 
the wave transmission coefficient is often more than 0.70 and is usually higher 
than intended or desired. Smaller gap spaces are therefore recommended when 
possible and where increased wave forces will not jeopardize the integrity of the 
supporting structure. 
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