
CHAPTER 86 

Harmonic Generation and Transmission Past a 
Submerged Rectangular Obstacle 

Andrew M. Driscoll 1, Robert A. Dalrymple 2 and Stephan T. Grilli 

Abstract : Experiments were conducted in a wave flume to study the harmonic 
evolution of a normally incident linear monochromatic wave train as it propagated 
over a submerged impermeable obstacle of rectangular cross-section. The reflection 
and transmission characteristics of the system were studied and compared to a linear 
scattering model, which was found to overpredict the transmission coefficients. The 
experiment was also simulated using the fully nonlinear model by Grilli et al. (1989), 
which performed well given its inviscid potential assumptions. 

Introduction 

The scenario of a linear wave train impinging on a submerged rectangular ob- 
stacle may be considered as a simplified representation of numerous physical 
phenomena, such as wave reflection and transformation over offshore reefs, bars 
and submerged breakwaters, which occur along actual coastlines. For this rea- 
son, the situation has been studied by numerous authors in the past 30 years, 
including Takano (1960), Mei and Black (1969), Losada (1991) and Rey et al. 
(1992), with the aim of analytically predicting the reflection and transmission 
characteristics for a given incident wave condition and obstacle geometry. 

These authors have considered the problem completely in the linear con- 
text; an incident linear wave is partially reflected upon passing a submerged 
rectangular obstacle, with both transmitted and reflected energy propagating at 
the same frequency as the incident wave. 
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Such assumptions become suspect as \i (= kh) becomes small and S (= a/h) 
becomes large over the obstacle. Under these circumstances, significant harmonic 
generation may occur over the obstacle, as has been observed by Seelig (1980) 
and Rey e.t al. (1992). The wave condition found downwave of the obstacle for 
such a nonlinear situation is likely to have energy distributed not only at the 
fundamental frequency, but at a number of higher harmonic frequencies as well. 

The goals of this research are : (i) to perform a series of laboratory ex- 
periments to scrutinize the spectral transformation which occurs when a linear 
wavetrain passes over a submerged rectangular obstacle; (ii) determine the per- 
formance of the standard linear scattering theory for a situation where nonlin- 
earity is significant over the obstacle; and (iii) to evaluate the ability of the fully 
nonlinear potential model by Grilli et al. (1989) to simulate the laboratory data. 

Experimental setup 

The experiments were conducted in a precision wave flume with dimensions 30 m 
long by 0.6 m wide by 1 m deep. Repeatable wave trains were generated with a 
computer-controlled horizontal piston wavemaker, and a 1:35 impermeable slope 
at the opposite end of the tank functioned as a wave absorber. A submerged 
impermeable rectangular obstacle the width of the flume was fixed to the bottom 
of the tank 7.0 m from the wavemaker paddle. The water depth was h0 = 0.5 m, 
and the obstacle depth was hi = 0.12 m, so that the obstacle vertical aspect 
ratio is hs~L ~ 0.76. The obstacle length was 0.78 m, i.e., 1.58h0 or slightly 
more than twice its height. 

Two sets of experiments were carried out. In the first experimental set, 
a single sine wave condition (incident height Hi = 2.50 cm, period T = 1.70 s, 
with ka = 0.019) was produced on seven occasions. By moving the position of 
four wave gages prior to each run, an array of 28 gage locations was created (fig. 

1). 

The second experimental set consisted of 12 additional runs with the same 
wave height but with wave periods ranging from 0.8 s to 1.9 s. A 3-gage ar- 
ray was placed between the obstacle and the wave generator, thereby allowing 
the reflection coefficient (Kr) to be determined as a function of the incident 
wavenumber (fig. 2). Two additional gages were placed at locations downwave 
of the obstacle for redundant measurement of the transmission coefficient (Kt). 

Experimental results 

Spectral analyses of the 28 wave gage locations in the experimental data set yield 
the amplitudes of the individual harmonics, and reveal the nonlinear transfor- 
mation undergone as incident linear waves pass over the obstacle (fig. 3). It 
is seen that significant harmonic generation occurs over the obstacle, and that 
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Figure 1: Experimental setup for spectral evolution portion of experiments. 

downwave gage locations 

Figure 2: Experimental setup for reflection/transmission portion of experiments. 

spatial amplitude modulation is present downwave of the obstacle. Such down- 
wave amplitude modulations are certainly not due to reflection-induced partial 
standing waves, as reflection from the 1:35 slope is quite small (measured at less 
than 2 % at the first harmonic frequency). It must thus be concluded that the 
situation downwave of the obstacle is still quite dynamic with respect to har- 
monic evolution. 

Comparison: linear scattering model vs. experiment 

As the wave condition downwave of the obstacle has been shown to be both 
nonlinear and spatially varying, it is of interest to compare the experimentally 
measured values of Kr and Kt to those predicted analytically by a linear scatter- 
ing model such as that of Losada (1991). The comparison, given in fig. 4, shows 
that the linear model predicts Kr quite well, but consistently overpredicts Kt- 
This overprediction is presumably due to the transfer of energy to the higher 
harmonics, and also to frictional and turbulent losses. From fig. 4, it is also seen 
that the measured value of Kt varied between gage location A and gage location 
B by as much as 5 % or more. 
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Figure 3: Spatial evolution of the first four harmonics in the experimental 
data; (*)=lst harmonic, ( • )=2nd harmonic, (»)=3rd harmonic, (*)=4th 
harmonic. Fine dashed lines are splines fit to data points, long dashed lines 
show boundaries of obstacle. 
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Figure 4: Comparison of Kr and Kt found experimentally and via the linear 
model of Losada (1991); (• )=results of Losada (1991) model, (* )=measured 
Kr., ( * )=measured Kt at gage A, ( • )=measured Kt at gage B. Dashed lines 
are splines fit to Losada data. 
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Boundary element method (BEM) model 

The two-dimensional nonlinear potential model by Grilli et al. (1989,1990), 
and its most recent extensions, are used to compute wave propagation over the 
submerged obstacle. With the velocity potential being defined as (j>(x,t), the 
velocity is given by u = V</> = (u,w), and the continuity equation in the fluid 
domain fi(t) with boundary T(t), is a Laplace's equation for the potential, 

V2<j6 = 0 in Q(t) (1) 

Using the free space Green's function G(x,xi) = — ^: log | x — x\ |, equation (1) 
is transformed into a Boundary Integral Equation (BIE), 

a(z,M*») = /     [f^(*)G(*,x,) - <Kx)dG(*,X,)] dT(x) (2) 
JT(x) on on 

where x — (x, z) and x\ = (xi, zf) are position vectors for points on the boundary, 
n is the unit outward normal vector, and a(x{) is a geometric coefficient. 

On the free surface T/(i), <j> satisfies the full nonlinear kinematic and dy- 
namic boundary conditions, 

7^ = (i+u'v)r = u = v^       onr/(t) (3) 

~ = -9V + ^-^<t>-- onIV(i) (4) 
Dt •" '  2 P 

respectively, with ?', the position vector of a free surface fluid particle, g the 
acceleration due to gravity, r\ the vertical elevation of the free surface (positive 
upwards and r\ = 0 at the undisturbed free surface), pa the pressure at the 
surface, and p the fluid density. 

No-flow conditions are prescribed along solid boundaries, and, in the present 
applications, cnoidal waves are generated on the boundary Tri(t) by specifying 
a piston wavemaker motion, as in laboratory experiments (see Grilli & Svendsen 
1990, for detail). 

The time integration : The time stepping, follows the Eulerian-Lagrangian 
approach used by Dold & Peregrine 1984. It consists of integrating free surface 
conditions (3) and (4) at time t, to establish both the new position of the free 
surface Tf{t), and the boundary conditions at time t + At (At denotes a small 
time step increment). Second-order Taylor expansions are expressed in terms 
of At and of the Lagrangian time derivative (as defined in (3)), for both the 
position r(t) and the potential <j)(t) on the free surface. Coefficients in the series 
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are calculated by solving two Laplace problems—for <j> and -£—at each time 
step (see detail in Grilli, et al. 1989). 

Numerical implementation : The BIE (2), equivalent to Laplace problems 
(1) for (j>, and the equivalent BIE problem for |j are solved by a higher-order 
BEM, using a set of collocation nodes on the boundary, and elements to inter- 
polate between collocation nodes. Quasi-spline elements are used on the free 
surface, and isoparametric quadratic elements elsewhere. Each integral in (2) is 
transformed into a sum of integrals over each boundary element. Non-singular 
integrals are calculated by standard Gauss quadrature rules. A kernel transfor- 
mation is applied to the weakly singular integrals, which are then integrated by a 
numerical quadrature exact for the logarithmic singularity. Details of the numer- 
ical implementation can be found in Grilli, et al. 1990, along with a discussion 
of corner problems associated with surface piercing bodies such as wavemakers. 

Discretization and numerical parameters : A limitation of the BEM model 
is that any wave breaking in the computational domain effectively halts the 
solution algorithm. An adjustment of tank boundaries, hence, had to be made 
to prevent breaking on the slope of the numerical wave flume. Tank boundaries 
were re-defined such that the most downwave portion of the slope made the 
transition to a shallow shelf just below the breaking depth. Fig. 5 shows the 
re-defined tank boundaries which includes a region of constant depth h0 = 1 and 
length 21h0, and a 1:35 slope with a shelf of constant depth hi = 0.34, at the 
upper part of the slope, from x' = ~ = 44 to 56. A rectangular bar of height 
0.76/io and width 1.58A0 is located with its axis at x' = 14.83. As a transmitting 
boundary condition was not available in the model, reflection off the back wall of 
the numerical wave flume became a limiting condition. The comparison of BEM 
model vs. experiments must thus be made in the time between the initiation of 
paddle motion and the arrival of back wall-reflected energy at the most downwave 
gage location in the BEM model (x' = 21). 

The free surface discretization is made of 224 quasi-spline elements, and 
there are 73 quadratic elements on the bottom and lateral boundaries. The 
interval between nodes on the free surface is 0.25, and 0.50 on the horizontal 
bottom, the slope, and the shelf bottom. To increase resolution and accuracy 
on and above the bar, this interval is reduced to about 0.20 along the bar three 
sides. The total number of nodes is 365. This corresponds to a CPU time of 
7.63sec (IBM3090/300) per time step. Time step is automatically selected in the 
model, to ensure optimum accuracy and stability of calculations. 

BEM model vs. experiment 

A comparison is made between computations and experiments, for which both 
experimental and numerical set-ups correspond to closely identical conditions, 
with the waves being generated from still water using a piston wavemaker in 
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Figure 5: Geometry of the numerical wave flume, as re-defined for entry into 
BEM model. The shown axes are nondimensionalized with the water depth, 
x' = xjh and z' = z/h. 

both cases. In the present case, a cnoidal wave of height H[ = -jf- = 0.05, and 

period T" = TJ-jL- = 7.52 is generated at the leftward lateral boundary of the 

computational domain, and the corresponding incident wave profile is within 
2% of a simple sine wave of length —• = 6.75, as measured in the experiments. 
The model is run for over 20 wave periods, and no adjustment of time lag be- 
tween both data sets is made before comparison. This, hence, represents a very 
demanding test of the model performance. 

Fig. 6 shows a water surface comparison between the experimental and 
BEM results. A similar comparison is shown in fig. 7 for time series at locations 
0.72 m and 1.92 m downwave of the obstacle. The BEM results are seen to 
deviate from the experimental results in both amplitude and phase. The nature 
of this deviation is better revealed by a frequency-domain comparison (fig. 8) 
which, due to the limitation of the non-breaking BEM requirement, is possible 
only for the first 8 waveforms following a 10-second startup period. The BEM 
model is shown to predict harmonics of similar amplitude to those observed in 
the experiments, with the exception of the first harmonic, which is overpredicted. 

This discrepancy in first harmonic amplitude is likely due to the influence 
of flow separation as the wave-induced velocity oscillations interacted with the 
corners of the submerged obstacle. As such flow separation was observed in 
the experiments, the disagreement in the first harmonic amplitude between the 
BEM model and experiment is not surprising, given the inviscid potential flow 
assumptions of the model. 

As a check, the flow separation loss incurred as a waveform passes the 
obstacle may be estimated with a crude analytical approach. A simple nonlinear 
friction representation is assumed, r]\ — r\i = ^-|w|u. If the obstacle is assumed 
thin in relation to the wavelength, quasi-steady flow is assumed, and frictional 
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Figure 6: Water surface comparison of BEM model to experiment at t=7.0 s, 
t=10.0 s, t=15.0 and t=20.0 s after the initiation of paddle motion; (—-)=BEM 
model, (—)=experiment. 
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Figure 7: Time series comparison of BEM model data to experiment, at locations 
0.72 m and 1.92 m downwave of obstacle; (—-)=BEM model, (— )=experiment. 
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Figure 8: Comparison of spatial amplitude modulations, BEM model and ex- 
periment;      (----)=BEM    model,     (— )=experiment,     (*.&) = lst    harmonic, 
(»,o)=2nd harmonic, (»,n)=3rd harmonic, (A,A)=4th harmonic. 
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effects are averaged over a wavelength, it may be shown that 

Vi -12= ,4(y,° ~ !}a? Jsinh kh ~ sinh ^ - h°^ ® &-Khi0u:i cosh  kh 

where rji and j/2 are the water surface elevations prior to and after the obstacle, / 
is an empirical friction-loss coefficient, u is the amplitude of the depth-averaged 
velocity downwave of the obstacle, a and h are the amplitude and depth behind 
the obstacle and h0 is the depth on top of the obstacle. The friction coefficient 
/ for this case is given by / = (h/h0 — l)2. 

Introducing the downwave first harmonic amplitude from the BEM results 
(~ 1.25 cm) and the other relevant parameters into 5, we find r\\ — r/2 ~ 0.16 
cm. This agrees well with the discrepancy between BEM and experimental 
amplitudes of approx 0.15 cm. 

The downwave higher harmonic amplitude modulations are less pronounced 
in fig. 8 compared to fig. 3, when the tank was fully developed. Nonetheless, 
the BEM model does predict spatial amplitude modulations which are qualita- 
tively similar to the experimental results. The degree of disagreement present 
is certainly also due to the influence of flow separation at the first harmonic 
frequency, as a misrepresentation of the first harmonic component will be passed 
on as erroneously simulated higher harmonics as well. 

Conclusions 

The spectral evolution of an incident regular wave train has been traced as it 
propagated over a submerged rectangular obstacle, and comparisons have been 
made between the experimental data and both a traditional linear scattering 
model and a BEM model. The experimental data revealed the existence of 
spatial amplitude modulations downwave of the obstacle. 

The linear model of Losada (1991) was shown to predict the reflection coef- 
ficient quite well, despite the high degree of nonlinearity present in the vicinity of 
the obstacle. However, it was seen that the transmission coefficient was consis- 
tently overpredicted due the linear model's omission of energy transfer to higher 
harmonics and energy dissipation. An implication of the above results is that 
the linear scattering approach may underestimate the effectiveness of a structure 
(ie, submerged breakwater) under highly nonlinear situations. 

The BEM model by Grilli et al. (1989) was found to simulate downwave 
spatial amplitude modulations qualitatively similar to those found in the data. 
Comparisons, however, were hampered by the presence of flow separation in the 
experiments which could not be modelled in the BEM formulation. It is con- 
jectured that the BEM model would have simulated the experiments more ac- 
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curately, had the obstacle depth been greater, thus inducing less flow separation. 
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