
CHAPTER 70 

PROBABILISTIC STRUCTURE OF RANDOM WAVE 
GROUPS 

Ke Yu* 

Abstract 

This paper deals with the statistical properties of wave groups in a stationary 
ergodic normal process. For a narrowband Gaussian process, a method based 
on Kimura's theory is developed to estimate the characteristics of wave groups 
directly from the wave spectrum. For a non-narrowband Gaussian process with 
an arbitrary bandwidth, a new model is established to predict the formation of 
the wave groups by means of zero-upcrossing method. Thus the probabilistic 
structure of the wave groups in a Gaussian process with an arbitrary bandwidth 
can be determined. Using this model, the mean run length of the wave groups 
above any amplitude and the probability distribution of run length at any level 
can be obtained. On the other hand, a representative wave period of the wave 
group is suggested to describe the time intervals between two successive maxima. 
The computational data shows that the bandwidth parameter has a significant 
effect on the statistical properties of wave groups. 

1     Introduction 

A wave group can be conveniently defined as several successive waves which exceed 
a given amplitude level. The waves in the group have similar wave height and wave 
period. Wave groupiness is an important feature of stochastic wave processes. It 
has been proven that wave groups have significant effects on many ocean engineering 
problems, such as the resonance of offshore structures and the overtopping above 
coastal structures. Because of the importance of the groupiness phenomenum in 
naval, ocean and communication engineering, extensive studies have been made on 
this property of stochastic waves in the past twenty years, for example, Kimura 
(1980) and Funke et al. (1979). Using the Markov chain concept in expressing the 
relationship between two maximum points, Kimura (1980) derived the probability 
distributions about the runs of high waves, the runs of low waves, and the runs of res- 
onant wave periods respectively. Funke et al. (1979) developed a different method, 
SIWEH, to describe a wave process. A parameter GF was defined to express the 
groupiness degree in a random wave process. Though SIWEH may have the advan- 

tages in describing non-Gaussian processes, the author appreciates Kimura's theory 

*Research engineer, Department of River and Harbor Engineering, Nanjing Hydraulic Research 
Institute, Nanjing 210024, P.R.China. 

Current address: Center for Applied Coastal Research, Department of Civil Engineering, Univer- 
sity of Delaware, Newark, DE 19716, U.S.A. 

932 



STRUCTURE OF RANDOM WAVES 933 

more for the wave group problem because it provides the information about the prob- 
abilistic structure of wave groups which is of concern by engineers and researchers. 

However, there are some weaknesses in Kimura's theory. One is the adoption 
of the narrowband assumption. It is observed that most wave processes in the sea 
environment have spectrum bandwidth parameter values varying from 0.5 to 0.9, 
hence the application of Kimura's theory in this case may overestimate the corre- 
lation among successive maximum points. The other (Battjes et al., 1984) is the 
inconvinence in deriving the statistal characteristics of wave groups. It is also worth 
mentioning that in previous studies, the wave period corresponding to a high wave 
run is neglected whereas the importance of this parameter is evident. 

Therefore, the present study emphasizes the problem in assuming that the pro- 
cess is a stationary ergodic Gaussian process with an arbitrary bandwidth and that 
the maximum series is subject to the Markov chain condition. The author expects to 
derive the probabilistic structure of wave groups which include the probability distri- 
bution of wave runs above any given amplitude level and to provide some description 
about the representative wave amplitude and wave period at any given amplitude 
level. 

2     Formation of the  Probabilistic Structure  of Wave 
Groups 

2.1    Wave run and its probability distribution 

Following Kimura (1980), we can consider a stationary ergodic Gaussian process x\{i) 
with a zero mean and another random process x2(t) which is essentially identical to 
xi(t) but has a time shift A prior to xi(t), i.e., 

X2(t)   =   X^t + X). (1) 

Assuming the successive maxima of x\(t) and X2(t) are subject to the Markov 
chain condition, the maxima of x^{i) and X2(t) are written as: A\ = {xi(t), 
\xi{t) >0,ii = 0,X! < 0}, A2 = {x2(t),\x2(t) >0,x2 = Q,x2 < 0}. If the time 
interval A is defined as the expected wave period between two successive maxima, 
the joint probability density function of two maxima / (Ai,A2) becomes the prob- 
ability density function of two successive maxima. The probability density function 
of A^orA^ is defined as / (Ai) and can be derived from / {A\,A2). 

Two states of wave height are defined. One state is S0 = {Ai, |A; < A^,i = 1,2}, 
the second is Si = {At, |A; > AL,I = 1,2}. Hence, all the maxima of x\(t) and x2(t) 
can be classified into these two states according to their amplitude values and the 
given amplitude level A^. The two states combined form a state space fl = {.So, 5*1}. 

For this two state Markov chain, the one-step transition probability matrix is 
given by 

PW  = P 
Pu    P12 

P21    P22 
(2) 
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where 

A, = Rr«A. e ft, |„, 6 ft, . ^^f^'t'"""1. (3) 

P12 = Prob{A2 G 5i, |Ai e 50} = -^— .  , (4) 
IoLf(Ai)dA1 

P2i = Pro6{A2 € 50) |^i e Si} = *    r / A w.  (5) 

f? IT f (Au A2)dAi dA2 
P22 = Prob{A2 e Su |Ax € St} = /°°/(Al)jAl  • (6) 

Because of the homogeneous feature and the Markov property of maximum point 
process, the N-step transition probability matrix can be easily obtained as follows 

p[N] _ pN /7\ 

The N-step transition probability matrix describes the probabilities of N-step transi- 
tion through all possible paths. Now we consider a wave run which has a run length 
L. The transition path of this run must be the pattern as shown in the following 
figure . 

state 1 -*• state 1 -»- state 1-*-              state 1-*-   state 0 
 1 , 1 1 , 1 , ». 

12 3 L L+l 1 ^ J time 

The initial state probability distribution is taken as PQ = [ 0 1 ]. The row 
matrix Po means that the wave run starts when a wave exceeds the amplitude level 
AL initially. The run ends when the Lth wave exceeds At at last. 

The probability matrix after L-step transition can be expressed as 

P11    P12 lL 

PL = P0P
h =  [0      1] 

P2\    P22 
(8) 

From the above equation, the cumulative probability of a wave run which follows the 
mentioned pattern can be found as below 

P(L) = Pg~\l - P22), (9) 

where L is the length of the run . The mean run length of wave groups above some 
amplitude level can also be derived from equation (9) as follows 

x = (T^r (10) 

By a similar method, the probability distribution of a run of low waves and the 
distribution of the total wave run can be obtained. For conciseness, these results are 
not included in this paper. 
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2.2    Representative amplitude and period of wave groups 

When an amplitude level is given the wave groups are defined. The global statistical 
properties of wave groups can be determined by using the method described above. 
However, in order to describe a wave group in detail, a wave amplitude A* and a 
wave period T* can be defined to represent the wave run. 

A* could be defined as the expected amplitude value above the level A^ 

..     STLAif(A1)dA1 

$ZKM)dAx 
{ X) 

and T* could be defined as the expected wave period under the condition of A = A* 

POO 

T' = /    Tf(T,\A*)dT, (12) 
Jo 

where f(T, \A*) can be derived from the joint probability density function of wave 
amplitude and wave period. 

In addition to A* and T*, the characteristic extreme value of the maxima in a 
wave group with run length L can be calculated based on extreme value theory. For 
example, the probability density function of extreme values in a wave group can be 
expressed as 

9(0 = L{f(0[l-m)]L-1} (13) 

and the required characteristic values of extreme value distribution can be evaluated 
from equation (13). 

3    Wave Groups in a Narrowband Gaussian Process 

3.1    The joint probability density function of two maxima 

Suppose a narrowband Gaussian process x(i) has a zero mean and a spectrum Sx(u). 
It is a well known fact that x{t) can be written as (Ochi, 1982) 

x(t) = Xc(t) cos(oj0t) - Xs(t) sin(io0t), (14) 

in which Xc and Xs are two orthogonal components which vary slowly with time 
and OJQ is the central frequency. It can be proven that Xc and Xs are also the 
Gaussian processes which have the exact same mean and variance with x(t). The 
auto-spectrum and co-spectrum of Xc and Xs can be expressed in terms of Sx(v) 
as 

SxcH = SXs{u) = SX(OJ - OJ0) + Sx{oo + w0), (15) 

Sxcxs(u) = -Sxsxc(u) = i [Sx{u - w0) - Sx(u + wo)]- (16) 

An inverse Fourier transfer is applied to get the auto-correlation or correlation func- 
tions of Xc and Xs as follows 

/oo 
Sxc(u)exp{w\}du (17) 

-CO 

J/-CO 

Sx(w) cos[(co — o;o)A] du, 
o 
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/OO 

Sxcxs(w) exp{iu>\} du> (18) 
-OO 

J/-CO 

'     Sx(v) sin[(u> — wo)A] du>, 
o 

where wo = wp (peak frequency) and A is defined as the expected period between 
two successive maxima estimated by following equation 

A = 2*./^, (19) 
V m2 

where 
/oo 

w*5x(w) du>,     i = 0,2. 
-OO 

Alternatively, equations (17) and (18) can be expressed in terms of the one-side 
spectrum S(w) 

/•OO 

RxcW = RxsW = /    S(u) COS[(OJ - wo)A] du, (20) 
Jo 

yoo 

Rxcxs(V = -RxsXcW = /    S(OJ) sin[(ui - WQ)A] dw, (21) 
Jo 

where 5(w) = 25x(w). 
If the spectrum is symmetric about wo, then Rxcxs(^) — RxsXc(^) = ". It can 

be infered (Middleton, 1960) that the two dimensional amplitude probability density 
function is given by 

/(Ai,^2) = —g--To<- -g Ax^Vexpj ^g—^\,      (22) 

where B = wig — [R\   + R\ xs] an<^ ^o(x) is the zeroth order Bessel function of the 
first kind. 

After introducing two non-dimensional amplitudes, £ and rj, defined as 

i-       A\ A2 .    . e = v^ ' , = ^' (23) 

equation (22) can be rewritten as 

The correlation coefficient p can be determined by the following formula 

' = m0 • (25) 
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The one dimensional amplitude probability density function can be derived from 
equation (22) as 

and the dimensionless form of f(Ai) is 

/(0 = *exJ-^J. (27) 

3.2     Representative amplitude and period of wave groups in a nar- 
rowband Gaussian process 

Applying the maximum distribution into equation (11), the representative amplitude 
of a wave group above any given level £L can be obtained as 

C = tL + V^ exptfl/2} [1 - *(&)], (28) 

where 

*{x)=7^Lexp{-^} du. 

As for the representative wave period, the joint probability distribution of wave 
amplitude and period suggested by Longuet-Higgins (1975) is used to get the prob- 
ability distribution of wave period under the condition of £ = £* 

0 < £ < oo  ,   — <r<oo 
v 

where 

f = —==    ,     T =   ;-—    ,    V = , / = 1    ,    T =27! 
^m vT y    m\ 

$(x) is the error function and v is another bandwidth parameter which is determined 
by the spectral moments. 

The conditional probability density function of the wave period is 

A" m - ^ - T^mTB c -> {-!«"""}        (30) 

and the representative wave period can be calculated by equation (12) 

1 
exp {-^(rr)2}. (31) 

V2n£*[l-$(-{*/v)] 

Applying the two dimensional density function of two maxima presented by equa- 
tion (22) and one dimensional density function expressed by equation (26) into equa- 
tion (6), the probability P22 under the condition of a given amplitude level £* can be 
determined. The P22 value can also be used to determine the probability distribution 
of wave runs which are above the level £L- Equations (28) and (31) give the analytic 
expressions of representative wave amplitude and wave period of wave runs above a 
given amplitude level. 
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4    Wave Groups in a Non-narrowband Gaussian Pro- 
cess 

4.1      The two dimensional maximum distribution 

Given a stationary Gaussian process Xi(t) with a zero mean and an arbitrary spectral 
bandwidth and another process x2(t) defined in equation (1), the time shift A can be 
determined by the bandwidth parameter e and the moments of the spectrum 

A = 4TT 
x/T m0 

1 + A/1 - «2 V m2' 

«=l/l 
ml 

mom^' 

(32) 

(33) 

It can be proven that the two processes x\{i) and x2{t) and their deriatives £i(i), 
xi{t), x2{t), x2(t) are subject to a six dimensional normal distribution ( Ochi, 1979). 
Their joint probability density function can be written as 

/W=7^4TT75^HXS""1X1' (34) 
(2TT)3|£|1 

in which the row matrix X is 

X = [ xj(i)    Xl{t)   xx{t)   x2(t)   i2(t)   x2(t) ]. 

The covariance matrix can be expressed in terms of the spectral density function 

S = 

m0 0 —m2 moc -mis -m2C 

0 m2 0 mis m2c -m2S 

-TO2 0 m4 -m2c m3S m4C 

moc mis -m2C m0 0 -m2 

-mis m2C m3S 0 m2 0 
-m2C -m2S m4C -m2 0 m4 

where 
roo 

= /    w'S(w) 
Jo 

duj i = 0,2,4, 

mic =  I    v'S(u>) COS(OJ\) du>   ,    i = 0,2,4, 
Jo 

mis = /    OJ'S(OJ) sin(oj\) du   ,   i = 1,2,3. 
Jo 

As mentioned before, the positive maxima of xi(/) and x2(t) must satisfy the 
conditions, x,(t) > 0, £; = 0, x\ < 0, i = 1,2. The expected number of maxima 
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which are above the respective amplitude levels A\ and A2 per unit time can be 
evaluated by the following equation 

_ yoo    />oo    rO       fO 
NAi,A2 = /     /     /      /     \xx\\x2\ f(xx,0,xi,x2,0,'x2)dxxdx2dxxdx2.       (35) 

J A\   J A2   J—00 J~oo 

Leting A\ = A2 — 0 in equation (35), equation (35) can be rewritten as 
J/"00    />oo    rO       rO 

/      /      /     l^iH^I f(x1,0,x1,x2,0,x2)dxidx2dxidx2 
0     J0     J~oo J—oo 

(36) 

and it can be used to estimate the expected number of maxima in x\{i) and x2{i) 
per unit time. The probability that the maxima in x\(t) and x2(t) exceed respective 
amplitude level A\ and A2 can be considered approximately as the ratio of these two 
expected numbers. Hence the joint probability density function of two maxima can 
be derived from the ratio NAltA2/^0,0 

f(AuA2) = -    °2 

(37) 

1 
NAUA2 

8AxdA2 \ #0,0 

/-ooJ-ool^ill^l^^i,0,Si, A2,0, x2)dx1d'x2 

fo° So0 /-00 f-00 1*111*2| f(xi, 0, £1, x2,0, x2) dxidx2dxxdx2 

Now, define two new Gaussian processes which are derived from Xx(t) and x2(t) 

(38) si(i) =-=*!(*)   ,   x'2(t) =—=x2(t) 

and two dimensionless maxima as before 
Ax 

/m0 

t = T): 
/m0 Vmo 

The two dimensional distribution of two dimensionless maxima £ and r\ can be 
obtained simplely by replacing x\,x'2,x[,x'2 ,(, and r\for the proper terms in equation 
(34) and (37). Note the covariance matrix S becomes S' and satisfies the following 
relation 

S' = — S. (39) 
m0 

The probability density function of the maxima in process xi(t) has the form 

f(Ax) •• 
2/A/m0" 

1 + %/T^ W,expV'^ 
1 /   Ax 

/m0 
+ Vl - e2 

/mo 

y.exp{ -- 1-*    - VT- Ax 

0 < Ax < co 

(40) 

and the non-dimensional form of equation (40) is as follows 

2 
/(« = 1 + vT^ 

Xexp 

•j^pl-Sl + v^f 2e2 

-§><i-* vT 
(41) 
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4.2    The representative amplitude and period of wave groups in a 
non-narrowband Gaussian process 

The representative dimensionless amplitude £* can be estimated by equations (41) 
and (11). 

For a non-narrowband Gaussian process, the joint probability density function of 
the maxima and the time intervals between two successive maxima can be used to 
calculate the representative wave period (Arhan et al., 1976) 

m,r) = a 
^(r(l-£2) r5 

exp < — 
2£27 f[(r

2-«2)2 + a4/?2]}, 

in which £ = Ai/y'mo 
The conditional probability density function of r can be expressed as 

r = T/X ,   a = 0.5(1 + vT 
ty density f 

f(r,\Q = 

and the representative wave period r* can be written as 

r*= /    rf(T,\t)dr. 
Jo 

(42) 

(43) 

(44) 

Note that r* is not a wave period according to the exact definition of a wave period by 
means of zero-upcrossing. It is just a time interval between two successive maxima. 
However, when the wave amplitude is large enough, r* can be considered as a good 
approximation of wave period. 

5      Computational Results and Discussions 

In order to find the effect of the spectral bandwidth on the probability structure of 
wave groups, different e values should be applied in this computation. But the com- 
mon wave spectra used in analysis and experiment, such as the JONSWAP spectrum 
and the Bretschneider spectrum, only have limited range of e values. Hence some typ- 
ical wave records used in Ochi's study are used here again. The e values of these spec- 
tra vary from 0.46 to 0.8. A JONSWAP spectrum with a = 0.05, fP = 0.1Hz, 7 = 7.0 
and e = 0.685 is applied to the computation. Table 1 displays the features of the 
spectra which include the bandwidth parameter e and the correlation coefficient p 
calculated by equations (33) and (25). 

Table 1. Wave records and wave spectrum used in the computation 

wave 
spectrum 

spectral bandwidth 
parameter e 

correlation 
coefficient p 

peak frequency 
w(27r * Hz) 

WS1 0.468 0.458 0.875 
WS2 0.594 0.299 0.563 
WS3 0.685 0.676 0.626 
WS4 0.806 0.267 0.413 
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It is clear that the numerical integration in equation (37) is the major work in 
this computation. Here, 2.401 X 107 discretizing points are used in calcalating the 
quadruple integration in order to guarantee accuracy. 

Figure 1 shows the relationship of P22 and £L- For each spectrum, two e — fL 

curves based on the non-narrowband and the narrowband theory respectively, are 
presented to compare the difference between two theories. It can be seen that the 
narrowband theory will give larger a P22 value when e is increased for fixed fx,. In 
this case it seems only the value of e will determine the P22 — (,b relation under 
the non-narrowband assumption. When e = 0.46, the two theories give almost 

the same results for small amplitude levels. For the wave spectra which have very 
small e values, the strong singularity of the co-variance matrix makes its determinant 
value approach zero and leads the elements in the inverse matrix S_1 to infinity. It 
will induce the non-existence of the joint probability density function expressed by 
equation (37). In this situation, the narrowband assumption could be applied to 
simplify the problem. We can also infer that when the value of e approaches zero, it 
is the correlation coefficient p, not the bandwidth parameter £, that will determine 
the P22 — £L relation if € is very small. This estimation can be demonstrated by 
the one dimensional analytic distribution of wave amplitude in a non-narrowbanded 
Gaussian process which has a small bandwidth. From equation (41) it can be seen 
that the wave amplitude distribution with e value in the region 0 < e < 0.5 is almost 
the same with the Rayleigh distribution expressed by equation (27). 

From equation (30) it can be seen that only the correlation coefficient p affects 
the joint distribution and finally determines the probability distribution of wave 
runs if the amplitude level remains constant. Employing equations (22) and (26) 
into equation (6), the probability distribution of wave runs can be obtained from 
equation (9). Figure 2 displays the relationship between the probability of wave run 
and its run-length with different p values. 

Figure 2 also shows two probability distribution of wave groups based on narrow- 
band theory and non-narrowband theory respectively. In the figure, the amplitude 
level ££, = 1.245 represents the mean amplitude in a standard narrowbanded normal 
process. In figure 3, the level £f, = 2.005 is just the significant amplitude in a nar- 
rowbanded normal process. By applying the two P22 values corresponding to a given 
amplitude level into equation (9), two probability distributions of the high wave runs 
above the amplitude level cart be easily determined. 

Applying equations (42) and (43) into equations (11) and (12), the dimension- 
less representative wave amplitude and wave period in a non-narrowband Gaussian 
process can be determined. Figure 4 displays the relation between the representative 
wave amplitude and the representative period with different e values. The curve 
noted as e = 0 represents the f* - ft relation expressed by equation(28). Figure 5 
shows the relationship of r* and f with different e values. Within the narrowband 
theory, the representative wave period r* calculated by-equation (31) is zero when 
f takes its minimum value of 1.245. In other words, the expected wave period is 
considered to be the representative wave period in this case. 

It is worthy to mention here that the present analysis and compuation is in fact 
the extension of Kimura's theory to a more general case. We know from the previous 
analysis that two parameters, the bandwidth parameter, e, and the correlation coef- 
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ficient, p, decide the statistical properties of wave groups. For an ideal narrowband 
Gaussian process, the effect of the bandwidth parameter on wave groups reduces 
to zero and only the correlation coefficient determines the properties. For a non- 
narrowband Gaussian process with a large e value, the computational data shows 
the opposite result. The bandwidth parameter plays a major role in determining 
the probabilistic features of the wave groups. But for a small t value we do not 
know which parameter is more important. We expect to see that as e increases, the 
bandwidth parameter will gradually replace the correlation coefficient and dominate 
the statistical properties of wave groups. To see these effects more clearly, further 
numerical analysis is necessary with variance on the two parameters. For example, 
wave spectra having the same e value but different p values or having the same p 
value but different e values. 

Another tricky problem arising in this study is the validity of the present theory 
when it is applied to a random process which tends to be white noise, i.e., the band- 
width parameter and the correlation coefficient approach to one and zero respectively. 
In this case the assumption that the successive maxima in the process subject to the 
Markov chain condition becomes questionable, since the successive maxima tend to 
be independent variables. To determine how far we can go with this model, more 
wave records and field data are necessary. It is definitely interesting and promising 
work to analyze and compare the experimental and field data about the random 
wave groups with the existing models. This will lead to a deeper understanding to 
the groupiness phenomenum in the real sea environment. 

6    Conclusions 

The following conclusions can be made from the above analysis: 
1. When a stationary Gaussian process has a small bandwith parameter, i.e., 

e < 0.5, the narrowband assumption can be applied and the statistical properties 
of wave groups derived from the narrowband theory can be considered as a good 
approximation. 

2. If the spectrum of a stationary Gaussian process is not assumed narrowbanded, 
i.e., e > 0.5, the application of the narrowband assumption will overestimate the 
correlation between two successive maxima. 

3. For a narrowband Gaussian process the correlation coefficient p will determine 
the statistical properties of wave groups. For a non-narrowband Gaussian process 
with large e value, it seems that the spectral bandwidth parameter will finally deter- 
mine the probabilistic structure of wave groups. 

4. Based on the formulas presented in this paper, the probabilistic structure 
of wave groups in a stationary ergodic Gaussian random process can be obtained 
directly from its wave spectrum. 
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Fig. 1    Change of P22 value with amplitude level £& 
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Fig. 2    Probability distribution of high wave runs ( ££, = 1.245 ) 
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Fig. 3    Probability distribution of high wave runs ( ££=2.005 
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