CHAPTER 68

AN EXPERIMENT AT SEA ON MECHANICS OF THE WAVE GROUPS
Paolo Boccotti (°), Giuseppe Barbaro (°°), Lucio Mannino (°°°)
Department of Fluid Mechanics and Offshore Engineering

University of Reggio Calabria

Abstract

Three field experiments were executed in the Straits of Messina
starting in 1990 in order to verify the closed solution for the mechanics
of the highest wave groups in a random wind generated sea state (Boccotti,
1984-88-89) . The paper presents the first experiment which was concerned
with the first part of the theory: the wave groups in an open sea. An
array of nine wave gauges and nine pressure transducers supported by
vertical piles provided space-time information on waves generated over
a fetch of approximately 10 Km.

1 Introduction

A wave with a given very large crest-to-trough height of H, in a
random sea state assumed Gaussian, is expected to belong to a well
defined wave group whose average configuration in space and time is
specified in terms of the autocovariance of the random wave field,
VX, TY=<n(x,)n(x+ X, (+T)> (1.1
where n(x,t) is the surface displacement. Specifically, if the crest
of the given very high wave occurs at x, =(x,.¥,) at time t,, the mean

surface configuration of the wave group is given by
X, T)y-v(X, T-T'
nc<xo+X,tu+T>=5<W(* . )}
e = $(0,0)-%(0.T")

5 (1.2)
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where T* is the abscissa of the absolute minimum of the autocovariance
function, which is assumed to exist and to be the first minimum after
T=0. The result (1.2), which was got by Boccotti (1984-1988-1989),
assumes that H is very large compared with the mean wave height, or
with (S=(_n—2)”2 for the wave field as a whole and, in effect, that the
spectrum is narrow in the sense described by Longuet-Higgins (1984),
so that 1 is a damped oscillatory function in X and T. Superimposed
on the deterministic form (1.2) is of course the "random noise" of the
residual wave field whose r.m.s. surface displacement approaches o as
X and T increase, but when H/o is large, the variations in the actual
sea surface configuration about n¢ surrounding x,,!, are small compared
with n¢ itself.

Associated with the configuration (1.2) is a distribution of velocity
potential in the water, which to the lowest order in a Stokes expansion
is given by

H é({,z,T)—é({,z.T—Tﬁ

+X,z,t,+T)=~ " 1.3
bl Xzt Ty S e Ty ) (1.3)
where
(X, z, T)=<n(x.)P(x+ X,z 1+T)>. (1.4)

Note that the hypothesis that H/o¢ is large is not necessarily
inconsistent with the use of the lowest order (linear) terms in the
Stokes expansion, provided H remains small with respect to the wave
length and the water depth. Note also that, if n and ¢ are taken as
solutions to the linear problem, then so are n; and ¢.. This can be
demonstrated formally from (1.2) and (1.3).

The covariance functions in (1.2) and (1.3) can be expressed in
terms of the spectra; for example

w({,T)=f f S(w,8)cos(k - X-wh)dwdb (1.5)
-1 o
where S(w,0) is the directional frequency spectrum and
2
15»§=%(Xsine+}’cose). (1.6)

The substitution of (1.5) into (1.2) gives ng; as a function of
position and time surrounding X =0, 7 =0 and leads to the sequence of
configurations illustrated in Figure 1, representing a wave group
moving along the y-axis, the dominant direction of the spectrum. The
spectrum was taken as that used by Hasselmann et al. (1973) with the
spreading direction function by Mitsuyasu et al. (1975). In deep water
this has the form

4
S(un9)=ag2uf5exp[—g(gﬁ) ]exp(hﬂy)exp[—@»—(»df/ZSZuﬁ]}
w
CN(n)|cost(0-0,)12", n-n,| -2 T w<w (1.7)
n)|cosz )1 o\ o, if SWwy, .
w )29 " 1 -1
. 2n

n=no(w—d) if w>wy, N(n)=[[_ucos éede] s

where the parameters vy, S and n, are taken respectively as 3, 0.08 and
20, as Hasselmann et al. and Mitsuyasu et al. suggest (n,=20 applies
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The time interval between

The water 1is deep, the spectrum of the

high individual wave at a point x,,y, (center of the framed area), with
a probability approaching 1, is produced by the transit of the wave

group shown by the pictures.
two consecutive pictures is equal to one wave period T, and the framed

Fig.l Quasi-determinism of the extreme wave events in a random wind
area is large 3 wave lengths Lg along x-axis and 6 Ly along y-axis.

generated sea state, assumed Gaussian, (Boccotti,

sea state is that described in section 1.
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An array of nine small towers was installed 20 m from the beach in
the configuration shown in Figure 3. These rested on the sea bed and
their bases (0.8 m squared) were ballasted by pig iron discs. The water
depth ranged within 3 m at the inner row (numbered 1-7) and 4 m at the
outer pair (8,9). Each tower supported an ultrasonic wave probe furnished
by Delft Hydraulics Laboratory, having range 0.6-2.0 m, and a pressure
transducer (full scale 0.175 bar) some 0.5 m below the water surface.
The sampling rate was 10 Hz for each gauge and the data were stored
in two personal computers. Since the station was equipped to receive
data (wave elevation and pressure) from eight towers only, one of the
nine had to be disconnected. During the experiment tower six was
disconnected because its ultrasonic probe was damaged.

©)

2.5 m —=e o=

dominant wave
direction

~— 6.4 m —=

DOODD DD
-~ 75 m—

Fig.3 Plan view of the small towers which supported the gauges. The
configuration of the towers is shown also in Figure 1 where the dominant
wave length Ly is assumed to be 7.5m.

Suitable wind and wave conditions with a steady wind from the North
West and the absence of southerly swells, were encountered 10 days
after the array was installed. The experiment was conducted over a 12
hour period, starting at 8 AM on May 10, 1990. A total of 64 records
was obtained, each of nine minutes duration and containing 280 to 360
dominant waves. The significant height ranged within 0.15 and 0.35 m
and the dominant period of the spectrum ranged within 1.7 and 2.5 s,
so that the water depth at the gauge locations was in effect deep.

3 ults the eriment

3.1 The surface displacement

The space-time covariances in equations (1.2) can be found from the
measurements by cross-correlation of the time series obtained at the
discrete measurement locations. The time series data of a record provide
measured auto-covariances as a function T for the various gauge locations
and these can be used on the right hand side of equation (1.2) to
estimate the surface displacement at these locations in an extreme
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wave. With x taken as the location of one of the gauges, the vectors

X were specified by the relative locations of the other gauges.

A typical example of the result is shown in Figure 4 which was
obtained from the time series data of record 30 without smoothing,
with x taken as the location of gauge 4. Thus the figure represents

the time histories of the expected surface configuration at the various
gauge locations, if an extreme wave of given crest-to-trough height H
is encountered at location 4. In this figure, A denotes the wave which
is the highest at location 4, and B is the wave immediately before
this one.

The direction of the wave can be estimated accurately since the
front of wave A in the central position of the group along the traverse
of locations 1-7 proves to be nearly straight. The relative phases
indicate an angle of incidence of 20° - the front center before point
3 transits point 9, and this is consistent with the fact that in Figure
4, the wave group at point 9 is higher than at point 8.

Note that at locations 8, 9, wave B is slightly larger than A, but
as it passes to the line 1-7, it decreases, passing from the center
to the head of the group while the succeeding wave A grows because it
replaces B at the group center. Note also that, in the course from
location 9 to location 4, the period of wave B increases as it passes
from the center to the head of the group, while the period of wave A
decreases as it reaches its maximum height.

Similar calculations have been performed for all the records and
the results are consistent with those described above. Specifically,
there is an increase in period of the decreasing wave B, a decrease
in the growing wave A and a local minimum period coupled to the maximum
wave height.

Also Figure 5 shows the time histories of the expected surface waves
at the various gauge locations, if an extreme wave of given
crest~to-trough height H is encountered at location 4. In this case
the auto-covariances in eq(l.2) were calculated from the theoretical
spectrum (1.7), with the same dominant period and direction of record
30 (T4=2.17s, 6,=20°). We see that the result from the theoretical
spectrum (Figure 5) is very close to that from the time series data
(Figure 4): all the basic features described earlier are still evident.

3.2 The fluctuating pressure head at the transducer depth

The variations in pressure at a fixed depth are given by —~pd¢/dt or
pgt where ¢ is the fluctuating "pressure head"” at this depth, so that
the derivative of eq(l.3) with respect to T provides the following
relation for the expected fluctuating pressure head at a fixed depth
z below an extreme wave
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H
Lolx,+ X 2+ T)= 2

{H(X-Z’T)"H(K-Z'T‘T')> 3.1

¥(0,0)-9(0,T")
wherell is the covariance of the surface displacement and the fluctuating
pressure head, of the whole record
M(X,z, TYy=<n(x,.)t(x+X,z,t+T)>. (3.2)
The time histories of the expected pressure head waves at the

transducer depth at the various gauge locations, if a surface wave of
given very large height H is encountered at location 4, were calculated
by means of eq(3.1) from the time series data of the measured pressure
and surface elevation of record 30. The results are shown in Figure
6. The overall similarity between this and Figure 4 gives confidence
in the consistency of the measurements.

Note that the enhancement of wave A during its course from location
9 to location 4 is somewhat smaller at the transducer depth (Figure
6), than at the surface (Figure 4), and this is consistent with the
reduction in period during this interval. Also, the abatement of the
height of wave B from point 9 to point 4 is somewhat smaller at the
transducer depth (Figure 6) than at the surface (Figure 4), which again
is consistent with the increase in period between these two points.
Finally, the wave direction estimated from the pressure head wave of
Figure 6 is the same as that estimated from the surface measurements
- the difference is smaller than 1°.

4 Conclusive remarks

The comparison between the extreme wave groups and the predictions
in terms of the measured space-time autocovariance, which was the goal
of the experiment, is shown in the paper by Boccotti et al. (1992),
which also gives a wider overall description of the experiment.

The experiment of May, 1990 revealed that it was possible to work
off the beach of Reggio Calabria nearly like in a wave tank, because
of the wave characteristics (pure wind waves with typical sizes of the
laboratory tanks), of the very small tide excursion and the clearness
of the water. That was because we decided to attempt some more complex
experiments.

On May, 1991 a reflecting wall of 12x2.2 m was assembled on 1.6 m
of water depth and thirty wave gauges were placed before the wall. The
experiment essentially aimed to verify the theory of Boccotti (1988-89)
as regards the nonhomogeneous wave fields. In particular, the theory
shows that a very high wave at a wall forms because a well defined
wave group like that of Figure 1, at the apex of the development stage,
impacts the wall and is reflected mirrorwise. Also the significant
wave height before the wall was analyzed through measurements at growing
distances from the wall, like in the laboratory experiment of Hirakuchi
et al. (1992). A preliminary illustration of the results was given by
Boccotti (1992).

Finally, a third experiment dealing with the inertia loads on a big
offshore platform has just been completed. The 1:50 scale model of a
gravity platform was assembled in 2.5 m of water depth and two sets
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of wave gauges and pressure transducers were placed at the platform
and far from it, in order to compare the wave forces on the column and
on an ideal mass of water with the same shape and volume.
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