
CHAPTER 58 

Estimating Incident and Reflected Wave Fields 
Using an Arbitrary Number of Wave Gauges 

J.A. Zelt* A.M. ASCE     and   James E. Skjelbreiat A.M. ASCE 

1      Abstract 

A method based on linear wave theory is presented to decompose one- 
dimensional wave fields into left and right-travelling components using an arbi- 
trary number of wave gauges. Results are presented to show that an increased 
accuracy is possible if more than three wave gauges are used. The technique uses 
a least squares scheme with variable weights. Results will also be presented that 
indicate a further improvement in accuracy is possible by an appropriate choice 
of the weighting coefficients. 

2      Decomposition Theory 

The decomposition of general one-dimensional wave fields into component 
waves travelling in opposite directions is of fundamental importance in many 
experimental studies. Breakwater evaluation involves estimating reflection co- 
efficients as a function of wave frequency, and the efficiency of wave-energy ex- 
traction devices can be quantified similarly. Reflection coefficients of shorelines 
are also important quantities since many beach processes are driven by the en- 
ergy extracted from incident waves through wave breaking. For some studies it 
is sufficient to obtain the spectra of the incident and reflected waves, but the 
complete space/time description of these waves can also be important, especially 
in resonance studies. 

Suppose that a one-dimensional wave field is observed by recording the sur- 
face elevation i]p{t) at a series of locations {xp}, p = 1, 2, ..., P, as shown in 
Fig. f. Using standard Fourier analysis techniques, the elevation can be expressed 
as 

AT/2 

%(*)= E Ai*eiUjt> (!) 
3=~N/2 

where w,- = 2TJ/T, T is the length of the time series, and N is large enough to 
resolve adequately the frequencies of interest.  The time t will be discrete for a 
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Figure 1.   Measuring incident and reflected waves with P wave gauges. 

sampled signal (t —v mAt, for m = 0, 1, ..., N — 1, with At = T/N), but this 
will not be explicitely indicated here to simplify the notation. 

Under the assumption that the waves are one-dimensional, dissipation is neg- 
ligible, and that linear wave theory is valid, the wave field in Fig. 1 can be 
approximated by a Fourier sum of left and right travelling waves: 

JV/2 

>?0M)=   5Z "!•]' 
i(k,X+Wjt) + aRj e (—kjx+ojjt) 

(2) 
j=-JV/2 

?here kj = 2ir/\j, and kj is related to u>j through the linear dispersion relation: 

w? = gkj tanh kjh . (3) 

The still water depth is h and g is the acceleration of gravity. Evaluating f)(x,t) 
at the location of wave gauge p yields 

ivy 2 

?(xp,t)= ]T { aLi e'^» + aBj t 
j=-N/2 

o \ ei"jt (4) 

where <f>jP = kjXp. The ultimate goal is to estimate the {CILJ} and {aRj} as 
accurately as possible from the wave records {rjp(t)} • Equating the coefficients 
in Eqs. (f) and (4) yields the following equations: 

AJtP = aLje"p'-" + aHje
_t^* p = l,2,...,P (5) 
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for each Fourier component j. If there are only two wave gauges, Eq. (5) can 
be solved exactly for aLj and aRj (Goda & Suzuki 1976). However, for P > 2, 
Eq. (5) is over-determined, and aLj and aRj must be estimated by an approxi- 
mate technique. Mansard & Funke (1980, 1987) treated the case P = 3 using a 
least squares approach with uniform weighting. Here, a weighted least squares 
approach will be described that is valid for arbitrary P. Instead of forcing strict 
equality in Eq. (5), the value of an appropriate 'merit' function will be minimized 
so that Eq. (5) holds approximately for each wave gauge p. Let 

t]>v = aLje
i4>'-" + aR}e *>* - AjtP . (6) 

For a given choice of aLj and aRj, ejtP represents the error in matching the jth 

Fourier coefficient AjiP at wave gauge p. The merit function is chosen to be a 
weighted sum of the squares of the errors for each wave gauge: 

where WjlP > 0 is the weighting coefficient for wave gauge p at frequency LOJ , 
and ( )* represents the complex conjugate of the enclosed quantity. At a given 
frequency specified by j, the reliability of the estimates of aLj and aHj depends 
on several factors, including the spacing between the wave gauges. The motiva- 
tion of introducing nonuniform weighting is to make use of this information so 
that the errors associated with wave gauges that provide reliable estimates are 
weighted more than the errors associated with wave gauges that do not provide 
useful information for estimating aLj and aRj. The criteria for choosing the 
weights {H^-,p} will be discussed in §3. The minimum of Eq. (7) occurs at the 
point where Ej is stationary with respect to the real and imaginary parts of aLj 
and aRj. At this point the following relations hold 

E^' 
P=i 

p 

E^ 

o-^hl 

ejiP e'*J>     =    0 . 

(8) 

P=I 

These are two complex equations for the two complex amplitudes aL,- and a R]- 
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Substituting Eq. (6) into Eq. (8) yields the two equations 

aLjSj +    «*iYlWj<pe-**i*    =    ^W^A^e"* 
P=I 

"L^W^e**"    +    a*iSi 

P=I 
p (9) 

E^^^ 
P=i P=i 

where Sj = XL=i ^i.p •   Rather than work with the absolute phases <j>^p, it is 
more useful to consider phase differences between wave gauges. Let 

A</>jiP = 4>j,P - 4>j,i = kj(xp - xx) (10) 

denote the phase difference between wave gauges 1 and p for frequency LOJ . Then 
the solution of Eq. (9) can be expressed as 

Si £ Wj* Ahp e-'A^- - £ Whp Ahp e'A^» E Whq 
-2t'A^j,, 

*R3 

vhere 

P=i 

p 

0 = 1 

p 

D    (llfl) 

$ E ^ A«e tA^ - E ^ A>* e~^-p E ^e 2iA£,-,, 

p=l p=l 9=1 
£> 

i? = si-E^.p^^E^6"2''^'9 

p=l g=l 

The denominator D is a real quantity and can be simplified to 

D = S] - ( E wi,P 
cos 2Ahv )   - ( E W'*> sin 2A<^> ) 

p 

= 4 E E w*» wi<isin2 A^>« 
p=l   q<p 

where 

A^j,p,  = A</>j)P - A<^,  = <^>jiP - 4>3,q  = ^(^p - %q) 

(115) 

(12a) 

(125) 

(12c) 

(13) 

is the phase difference between wave gauges p and q at frequency w,-. Equa- 
tion (12b) is the most efficient form to compute D since it requires the fewest 
operations to evaluate; however, Eq. (12c) is more useful for showing the be- 
haviour of the denominator. Since the weighting coefficients {Wj,p} are positive, 
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it is clear that the denominator can be zero at frequency LOJ only if the wave 
gauges are placed such that sinA<^M = 0 for all p and q. Clearly this is a 
condition to be avoided if possible, and this will be discussed further in §3. 

Further manipulation of the numerators in Eq. (11) leads to the following 
formulae for aLj and aRj 

p 

P=I 

p 

a*i   =   ^C3,VA3,V (14&) 
P=I 

where 

CjlP = 2iWjtP -'" ]T WiA sin A^,M eiA^-" (15) 
g^j.i   p 

D 
9=1 

This form emphasizes that ai;- and aRj are simply linear combinations of the 
{AjiP}. For P — 2 the results of Goda & Suzuki (1976) are reproduced, and 
for P = 3 the decomposition formulae of Mansard & Funke (1980, 1987) are 
obtained. 

3      Error analysis 

The sensitivity of the decomposition formulae Eq. (11) or (14) to errors 
in measuring the Fourier coefficients {A,]P} at a given frequency LOJ depends on 
the choice of the weighting coefficients {WjiP} as well as the spacing of the wave 
gauges relative to the wave length associated with LOJ . Consequently, the weights 
and the wave gauge locations should be chosen appropriately to maximize the 
reliability of the decomposition estimates. To illustrate this, suppose that the 
elevation records obtained from the wave gauges can be expressed as the sum of 
two one-dimensional linear waves travelling in opposite directions plus a residual 
or error signal £p(t): 

N/2 

Vp(t) =   ]T   {ALj e'^+'V) + ARJ e«(-*i«p+«i«) j + £p(t) . (16) 
j=-JV/2 

The residual signal £p(t) accounts for: 

1) noise/nonlinearities in the wave gauges and data acquisition hardware. 
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2) nonlinear hydrodynamic effects (e.g. deviations from the linear disper- 
sion relation). 

3) two-dimensional wave motion (such as cross modes in a wave channel). 

4) viscous effects. 

With 
N/2 

tpVv =    / j   £i,pe       i 
j=-JV/2 

Eq. (16) can be expressed as 

(17) 

7V/2 

j=-N/2 

(18) 

This is equivalent to Eq. (1) with A]iP — ALj e
l<t>>-<>-\-ARj e~'^-p+Sj:P. Substituting 

this expression for AjlP into the decomposition formulae Eq. (14) yields following 
estimates of the Fourier coefficients of the left and right travelling waves 

C-LJ — ALj 

*Rj 

P=I 

p 

ARj + 2_^ CJ,P 

(19a) 

(196) 
P=i 

The "exact" coefficients are obtained if the residual signal is zero; otherwise, the 
error eJ:P at wave gauge p is amplified by the coefficient Cj:P . The amplification 
of errors associated with wave gauge p can be represented by 

daLj 

3F- 
= 

daBj 

ut3,P 
\Cj,p\ D £^, smA<^p„eiA^' (20) 

Since the residual signal will not, in general, be perfectly correlated between 
different wave gauges, large errors associated with different gauges will not cancel. 
If the residuals CjlP are uncorrelated between wave gauges, a measure of the 
reliability of the decomposition as a function of frequency can be estimated by 
summing the terms in Eq. (20) over all wave gauges. The worst case occurs when 
D = 0; for P = 2 (Goda & Suzuki 1976) this occurs for A</>j:i2 = WK, i.e., for 
\x2 — Xi\ = n\j/2 for any integer n. For arbitrary P this occurs if sin A<f>jiPq = 
for all p and q, i.e., if 2\xp — xq\j\j is an integer for each combination of p and 
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q. Care should be taken when choosing the wave gauge positions to ensure that 
this criterion is not approached near frequencies of interest. 

To choose the weighting coefficients {WK,-lP} information must be available 
about the relative magnitudes of the residuals SjlP. If these error terms are the 
same for each wave gauge (at a particular frequency w,-), then uniform weighting 
is appropriate. However, if this residual signal varies from gauge to gauge, vari- 
able weighting is appropriate. This may be the case if the primary source of the 
residual signal is the deviation from the linear dispersion relation due to finite 
amplitude effects. In this case it may be better to concentrate the weighting 
near one wave gauge (say gauge number I) and reduce the weighting for distant 
gauges where the phase deviates from the linear prediction kj(xp — x{). This 
information might be obtainable from a cross-spectral analysis between the wave 
gauge elevation records. It might also be possible to make use of the sensitivity 
analysis in this section to help choose the weights. Other techniques for choosing 
the weights will depend on the particular sources of the errors and their statistical 
properties. 

Preliminary results have been obtained by using an ad hoc scheme based on 
heuristic reasoning. For each frequency UJJ being treated, a "goodness" func- 
tion G(A<j>j>pq) is defined that quantifies the desirability of the phase difference 
associated with the spacing between gauges p and q. Multiples of one-half the 
wave length are undesirable, and a large spacing relative to the wavelength is 
also undesirable. A function that reflects these characteristics is: 

G(A^) =     •! ^7 ,2 • (21) 

A large value of G indicates a better wave gauge spacing for frequency LOJ than 
a smaller value of G. The weighting coefficient WjtP for wave gauge p can then 
simply (and somewhat arbitrarily) be defined as 

WJ-, = X)G(A^,M). (22) 

4      Results 

To illustrate the use of the decomposition theory presented, a simulated 
wave field in 2 m water depth was created consisting of 4096 points per wave gauge 
record with a 0.05 s time step. A Pierson-Moskowitz type spectrum was chosen 
with a spectral peak at 0.47 Hz (corresponding to a wavelength of 6.64 m in 2 m 
of water). The RMS height of the right travelling wave is 0.5 m, and the Fourier 
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components of the left travelling wave are exactly 10 % of the Fourier components 
of the right travelling wave, although with random phase shifts applied. Hence, 
the RMS height of the left travelling wave is 0.05 m, and the amplitude reflection 
coefficient is 0.1 for all frequencies. In addition, a 0.01m RMS uncorrelated 
random noise signal was added on top of these two waves to simulate a wide 
variety of errors, noise, and other effects that cannot be simulated directly. 

Eight wave gauge records were simulated at the locations x — 0, 0.016, 0.052, 
0.130, 0.301, 0.679, 1.551 and 3.341m. These locations were chosen so that the 
minimum and maximum wave gauge spacings could resolve the minimum and 
maximum energy containing wavelengths of interest in the wave spectrum. A 
simple geometric telescoping factor was used to locate the intermediate gauges. 

0.0 0.5 1.0 

frequency (Hz) 

1.5 2.0 

Decomposition: 
Simulated data: 

- - - left (0.911m); 
 left (0.05m); 

right (1.045m); 
- right (0.5m). 

Figure 2. Energy density spectra and left/right amplitude ratios 
(RMS amplitudes in parentheses). 

0.01 

L/R ratio; 

3 
12. 
c 
a 

The energy spectra resulting from using only 2 wave gauges (located at x = 
0 m and x = 1.511m) are presented in Fig. 2. The data was partitioned into 
15 segments each with 512 points with a 50% overlap. A Welch window was 
applied to each segment. The spectra of both the left and the right travelling 
simulated waves are compared with the estimated spectra obtained from the 
decomposition technique described here. The left/right amplitude ratio is also 
shown. As discussed above, it shouldbe 0.1, but instead it deviates considerably 
from this value except near the peak of the spectrum since the wave gauge spacing 
was chosen to optimize the accuracy in this region. Uniform weights were used 
[W, V, 

The results for 3 wave gauges (located at x = 0, 0.679 and 1.511m) and 
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0.0 0.5 1.0 

frequency (Hz) 

1.5 2.0 

Decomposition: 
Simulated data: 

- left (0.0593m); 
• left (0.05m); 

• right (0.504m); 
- right (0.5m). 

Figure 3. Energy density spectra and left/right amplitude ratios 
(RMS amplitudes in parentheses). 

0.01 

— L/R ratio; 

uniform weights are presented in Fig. 3. These results are considerably better 
than for only 2 wave gauges since they are not susceptible to the singularity that 
the 2-wave gauge arrangement is. 

The results for all 8 wave gauges and uniform weights are presented in Fig. 4. 
These results are even better than for 3 wave gauges, although the improvement 
is perhaps not striking as the difference between the 2 wave gauge and the 3 
wave gauge case. 

However, in Fig. 5 the results for using 8 wave gauges and the variable weight 
scheme of § 3 are presented. A marked improvement is seen, with the left/right 
amplitude ratio very flat near 0.1 as it should be. It should be mentioned that 
the variable weight scheme described in § 3 yields exactly the same results for 
2 wave gauges as for the uniform weight case. For 3 wave gauges, only a very 
slight improvement is obtained by using variable weighting coefficients, and the 
results do not differ appreciably from those displayed in Fig. 3. 

The results in the time domain of the decomposition of with 8 wave gauges 
and variable weights are presented in Fig. 6. Here, only a small segment of the 
time record is displayed, but the relative amplitudes of the left and right waves 
as well as the noise signal can be seen. It should be noted here that the main 
source of the inaccuracy of the decomposition is due to the presence of the noise 
added to the left and right simulated waves. However, this noise signal does not 
cause significantly degrade the decomposition. 
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Decomposition: 
Simulated data: 

1.0 

frequency (Hz) 

-- left (0.0586m);       right (0.501m);     •--L/R ratio; 
 left (0.05m);  right (0.5m). 

Figure 4. Energy density spectra and left/right amplitude ratios 
(RMS amplitudes in parentheses). 

0.0 0.5 1.0 

frequency (Hz) 

1.5 2.0 

Decomposition:        ---left (0.0547m);       right (0.502m);     •— L/R ratio; 
Simulated data:  left (0.05m);  right (0.5m). 

Figure 5. Energy density spectra and left/right amplitude ratios 
(RMS amplitudes in parentheses). 

3 
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3 

a, 
S 

time (s) 

Decomposition:        - - - left (0.0518m);       right (0.500m); 
Simulated data:  left (0.05m);  right (0.5m); 

Figure 6. 

- noise (0.01m). 

Left and right travelling waves (RMS amplitudes in parentheses). 

5      Conclusions 

A method based on linear wave theory has been presented to decompose 
one-dimensional wave fields into left and right travelling components using using 
an arbitrary number of wave gauges. Results were presented for simulated wave 
gauge data to show that an increased accuracy is possible if more than three 
wave gauges are used, especially for broad band wave spectra. Results were also 
presented to indicate that a further improvement in accuracy is possible by an 
appropriate choice of the least squares weighting coefficients. 

Acknowledgements. The authors greatly appreciate the support of NTNF, Sta- 
toil, Amoco, Conoco, Exxon and Mobil. 



788 COASTAL ENGINEERING 1992 

REFERENCES 

Goda, Y. & Suzuki, Y.    1976   Estimation of incident and reflected waves in 
random wave experiments. Proc. 15th Conf. Coastal Engng., 828-845. 

Mansard, E.P.D. & Funk, E.R.  1980 The measurement of incident and relfected 
spectra using a least squares method. Proc. 17th Conf. Coastal Engng., 
154-172. 

Mansard, E.P.D. & Funk, E.R.    1987    On the reflection analysis of irregular 
waves. Tech. Rep. TR-HY-017, NRCC No. 27522, Nat. Res. Council of 
Canada. 38p. 

LIST OF SYMBOLS 

a estimate of the jth Fourier coefficient of the left travelling wave. 

aRj estimate of the jth Fourier coefficient of the right travelling wave. 

ALj hypothetical jth Fourier coefficient of the left travelling wave 
suming there is no noise and that linear theory holds exactly. 

as- 

ARj hypothetical j    Fourier coefficient of the right travelling wave as- 
suming there is no noise and that linear theory holds exactly. 

Aj}P jih Fourier coefficient of the wave amplitude time series recorded 
at wave gauge p. 

CjiP weighting coefficient for expressing aLj and aRj as linear combina- 
tions of the {Aj}J>}. 

Ej merit function whose minimum yields the amplitudes of the left 
and right travelling waves, aLj & aRj, at frequency j. 

£p(t) residual elevation signal at wave gauge p due to noise, nonlinear, 
viscous, and other effects. 

g gravitational acceleration. 

h still water depth. 

kj wave number of the j     Fourier component: 2ir/\j 

P number of wave gauges used to record the composite wave spectrum 

Sj sum of the least squares weighting coefficients:  XL=i WjtP. 
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T duration of wave gauge records {f]p(t)}. 

WjlP least squares weighting coefficient for probe p at frequency LOJ . 

xv location of wave gauge p. 

A(j>jtP phase difference between probes f and p for frequency u>j: A<f>jlP = 

A<j>jlPq phase   difference  between  probes   p   and   q   for  frequency   u>j: 

&4>j,pq ~ &<l>j,p - ^<f>i,9 ~ <t>j,P ~ <t>i,q = kj(XP ~ Xl)- 

tj!? the error in matching the jth Fourier coefficient AjtP at wave gauge 
p using the least squares algorithm. 

6j]P jth Fourier coefficient associated with the residual elevation signal 
Sp(t). 

rjp wave elevation recorded at location xv. 

\j wavelength of the jth Fourier component. 

<f>jtP absolute phase of the jth Fourier component at the pth wave gauge: 

ujj frequency of the jth Fourier component: 2irj jT 

SPECIAL SYMBOLS 

(  )* complex conjugate of the enclosed quantity. 






