
CHAPTER 48 

ESTIMATION OF IRREGULAR WAVE KINEMATICS 
FROM A MEASURED RECORD 

Rodney J. Sobey1 

Abstract 
This review of rational predictive methodologies for irregular wave 

kinematics confirms the crucial importance of the complete nonlinear free 
surface boundary conditions. Four methods, the global design wave method, the 
global linear superposition method, the local Wheeler stretching method and the 
local Fourier approximation method, have been compared for a very large 
measured wave from hurricane Camille. Free surface boundary condition errors 
are comparable to the wave height for the design wave and Wheeler stretching 
methods. They are sharply reduced by the local Fourier approximation method, 
though not eliminated. Linear superposition fails completely in the crest-trough 
region. 

Introduction 
The success that has been achieved in the theoretical prediction of regular 

wave kinematics is not immediately transferable to the prediction of surface and 
near-surface kinematics in irregular waves. Significant predictive difficulties have 
been encountered, especially near the crest. 

In many situations, analysis is based on measured or simulated water 
surface time histories at a fixed location. Spatial measurements of the sea state 
are most rare and the vast majority of measured field and laboratory records are 
discrete water surface rj(t) records from wave staffs or accelerometer buoys at 
a fixed location. The balance of the wave kinematics (velocities, accelerations and 
pressures) at the fixed location needs to be estimated from the known rj{t) trace. 
A closely related problem arises in statistical simulation of a random sea state 
from the linear Gaussian random wave model. Considerable success is achieved 
in the prediction of the space and time varying water surface. Unfortunately, this 
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success does not carry through to the near-surface kinematics, where spurious 
predictions result from the increasing dominance of the higher frequency (but 
much smaller magnitude) spectral components. 

Consideration here will be restricted to a subset of this problem where 
there is no y variation and the direction of both the wave motion and any 
coexisting Eulerian current coincides locally with the x axis. 

Considerable attention has been given to this problem as water velocities, 
accelerations and dynamic pressures all reach their maximum magnitudes at the 
water surface. Unfortunately, predictive methodologies are most vulnerable at the 
water surface, as a direct consequence of approximations in the imposition of the 
nonlinear free surface boundary conditions. Any methodology for the prediction 
of irregular wave kinematics that is both rational and viable must give 
appropriate attention to the free surface boundary conditions. 

Global and local methodologies are distinguished. Local methods do not 
compromise fidelity in the representation of the free surface boundary conditions 
in the global interest. Global methods, which closely follow regular wave theory, 
are less attractive for irregular wave kinematics. This paper will compare the 
predictive capabilities of two common global method (the design wave approach 
and linear superposition), a common local method (Wheeler stretching) and the 
local Fourier approximation method. As interest in irregular wave kinematics 
inevitably centers on big waves, the comparison will be based on a measured 
wave segment from Hurricane Camille, Gulf of Mexico, 1969. The selected 
segment has the highest crest height in the sequence and is among the biggest 
waves ever recorded. 

BACKGROUND IN REGULAR WAVE THEORY 
Common approaches to the prediction of irregular wave kinematics closely 

follow the pattern adopted in classical regular progressive wave theory. The 
discussion is simplified by recalling the basis of the classical theory. 

Attention will be directed to the unsteady formulation of regular wave 
theory. With the velocity potential function <p(x,z,t) as the dependent variable, 
the field equation is the Laplace equation 

i!* + i!* - 0 (1) 
dx2      dz1 

where the velocity components (u, w) in the fixed frame are (d<f>/dx, dcfi/dz). 
This field equation is subject to the following boundary conditions: 

(i)  Bottom boundary condition  (BBC),  representing no flow through the 
horizontal bed, is 

w - 0        at z - -h (2) 

where —h is the elevation of the bed. 
(ii) Kinematic free surface boundary condition (KFSBC), representing no flow 
through the free surface, is 



646 COASTAL ENGINEERING 1992 

W = ^I + „ia atZ-t|(jM) (3) 
dt        dx 

where t](x, t) is the free surface. 
(iii) Dynamic free surface boundary condition (DFSBC), representing constant 
atmospheric pressure on the free surface, is 

^+i(«*+w2)+CT-B       atz-nC*,0 (4) 
dt       2 

where g is the gravitational acceleration and B is the Bernoulli constant. 
(iv) Periodic lateral boundary conditions (PLBC), imposing wave periodicity in 
space and time, are 

§(x,z,t) = fy(x+2ii/k,z,t) = <t>(x)z,f+2rc/o)) (-*) 

where k is the wave number and w is the wave frequency. 
(v) Wave maintains a stable profile shape (or permanent form), requiring the 
wave profile to be symmetric in both x and t about the crest. 

Because of conditions (iv) and (v), progressive waves of permanent form 
are steady in a frame of reference moving at the phase speed C = co/k. The 
space and time variations of the water surface must follow 

^L = 5a+cia=o (6) 
dt        dt dx 

Predictive Capability of Regular Wave Theory 
Established regular wave theories (Stokes, Cnoidal, Fourier 

approximation) generally take advantage of the relative simplicity of the steady 
formulation where the independent variables are reduced to x — Ct and z. Basis 
function predictors of the dependent variable (typically the stream function) 
identically satisfy both the field equation and the bottom boundary condition, 
together with the permanent form constraint and the periodic lateral boundary 
conditions. Compatibility conditions designate the wave height and the co-flowing 
current. 

The essential detail of the solution however is determined largely by the 
free surface boundary conditions, which must be satisfied along the complete 
water surface. The complexity of the gravity wave problem is manifested through 
these free surface boundary conditions, which introduce nonlinearity to the 
problem and are applicable at a free surface that is itself part of the solution. 
Different orders of the same wave theory are distinguished by the level of 
approximation to the free surface boundary conditions, higher orders providing 
enhanced' fidelity. 

A conflict is immediately identified between the predictive capabilities of 
regular wave theory and the nature of the solution field. Wave theory consistently 
predicts that peak magnitudes and response extremes in velocities, accelerations 
and dynamic pressures are located along the free surface. Unfortunately, this 
region of peak interest in the kinematics and dynamics exactly coincides with the 
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region of maximum uncertainty in the wave theory predictions. 
Appropriate measures of theoretical error may be formulated from the 

free surface boundary conditions at the water surface. The kinematic and 
dynamic free surface boundary condition errors are respectively 

K(x,t) = W(X,T,,O - ^r (7) 
at 
dr\ 

and 

D(x,t) = ^(x,n,t) + :V(X,TI,0 + w2(x,r),t)} + CT - B (8) 
at 2 

In application, these will be represented in length units, as K/co and Dig 
respectively, for direct comparison with the local water surface elevation. 

For waves of even moderate height, the free surface boundary condition 
errors associated with the lowest order theory are significant. Predictive 
difficulties for near-surface kinematics must be expected from adoption of linear 
wave theory. They are indeed experienced. Nevertheless, there remains a 
reluctance to reject the simplicity and familiarity of the linear theory, and several 
measures have been proposed to mitigate the near-surface failings. 

Higher order theories by definition do a much better job in satisfying the 
free surface boundary conditions. They have little theoretical difficulties in the 
prediction of near-surface kinematics in steady waves, though they may often 
impose a considerable computational burden. Irregular waves are not steady, but 
it is clear that fidelity in representing the free surface boundary conditions must 
have a crucial role in any rational predictive methodology for irregular wave 
kinematics. 

Several unfavorable comparisons of regular wave theory and laboratory 
measurements have received considerable attention. The evidence however is not 
conclusive and closer scrutiny (Sobey 1989b) suggests that the predictive potential 
of regular wave theory remains sound. Errors both in measurement and in 
application of theory can be substantial and more than sufficient to negate any 
hasty conclusions. 

The influence of current in particular is often not given the attention it 
deserves. This involves the specification of the appropriate definition (Stokes' 
first or second) of phase speed and the associated current. The differences are 
potentially significant and compounded by the fact that many published wave 
theories have automatically assumed Stokes' first definition of phase speed (and 
often also zero current) in the problem formulation. Current is assumed to be 
depth-uniform and any vertical structure is ignored2. The adoption of a higher 
order wave theory may not be realistic where due attention has not been given 

A Stokes theory with a linear velocity profile (i.e. constant vorticity) by Kishida and Sobey 
(1988) has suggested that vorticity has only a very minor influence. After subtracting out the 
current profile, the residual "wave" kinematics are little different from those that would have 
been predicted for a uniform current with the same depth-averaged magnitude. The generality 
of this observation is presently uncertain. 



648 COASTAL ENGINEERING 1992 

to the influence of tidal or other ocean currents on the wave kinematics. 
Alternatively, if the current is not known, higher order precision cannot and 
should not be expected. 

Steady wave theory provides predictions of kinematics in long-crested 
regular progressive waves. Despite some unfortunate misinterpretation in the 
literature, steady wave theory does do a credible job where the waves correspond 
with the assumptions of the theory. The waves must be reasonably long-crested 
and steady, and the adopted wave theory must be consistent with the field or 
laboratory conditions. While the basis of wave theory is indeed sound, irregular 
waves clearly violate the permanent form and periodicity assumptions of the 
classical steady wave problem. Accordingly, there can be no strong expectation 
that regular wave theory will predict more than an outline of the kinematics in 
irregular waves. 

Generalization to Irregular Waves 
The spatial and temporal complexity of irregular waves would initially appear to 
have little in common with the conspicuous order of regular wave theory. 
Nonetheless, much of the problem formulation remains appropriate. Irregular 
waves are by nature unsteady, so that an unsteady formulation is pertinent. The 
field equation (Eq. 1), the bottom boundary condition (Eq. 2) and both free 
surface boundary conditions (Eqs. 3 and 4) continue to be applicable; these make 
up the bulk of the mathematical physics. Neither the periodic lateral boundary 
conditions, nor symmetry about the crest in x and t are appropriate for irregular 
waves. Further, application of the KFSBC is inconsistent with the present 
reliance on measured water surface records at a fixed location, as spatial 
gradients dt]/dx are not available from the measured record. 

The crucial aspects of the mathematical physics of the regular wave 
problem are the nonlinear free surface boundary conditions. The close 
relationship between regular and irregular wave theory guarantees that the free 
surface boundary conditions will remain a crucial aspect of irregular wave 
theories. 

GLOBAL APPROXIMATIONS 
Methodologies that seek to represent a complete irregular wave, from crest to 
following crest, from trough to following trough or from zero-crossing to following 
zero-crossing, are categorized as global. Among global methods, only the design 
wave and linear superposition methods will be considered here. Fourier-style 
methods (Dean 1965, Lambrakos 1981) and numerical field solutions (Forristall 
1985) have also been proposed. 

Design Wave 
An obvious candidate is to couple a trough to trough or zero-crossing 
identification of a wave height and a wave period for an individual wave record 
with an appropriate steady wave theory prediction for the same height, period, 
water depth and current. In principle, this is the essence of the design wave 
approach. As the dominant length and time scales are essentially correct, there 
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is an intuitive expectation that ensuing predictions of crest kinematics have the 
correct order of magnitude. There can be no expectation however that the 
predictive capability will consistently exceed order-of-magnitude precision. The 
associated regular wave theory will predict the water surface profile of the design 
wave. Regular and irregular wave profiles are unlikely to correspond, so that the 
free surface boundary conditions will not be satisfied on the actual water surface. 

The nature of the design wave approximation is illustrated in Fig. 1, which 
is based on a measured water surface record from Hurricane Camille in the Gulf 
of Mexico in 1969. The record sequence is amongst the biggest waves ever 
recorded. The water depth is 340 ft (103.6 m). In selecting design waves from a 
measured record, trough to trough identification is often preferred because of its 
focus on the crest. The height and period are 72.1 ft (22.0 m) and 13.8 s 
respectively, so that this is a deep water wave. The solid line shows the steady 
wave theory (Fourier) prediction of horizontal velocity along the predicted water 
surface, located such that the crest time corresponds with the measured record. 
Also shown are the KFSBC and DFSBC errors along the measured water 
surface. These errors are of comparable order to the wave height. The design 
wave approach will certainly provide order of magnitude estimates of irregular 
wave kinematics, but consistently better predictions cannot be expected. 

Superposition of Linear Waves 
A familiar alternative is the superposition of numerous freely-propagating Airy 
waves, whose amplitudes, frequencies and phases are determined from a discrete 
Fourier transform of the irregular water surface profile. Consistent kinematics 
are available from Airy wave theory. 

As a direct consequence of the linear superposition approximation, the 
Fourier transforms all involve relatively simple transformations on the Fourier 
transform of the irregular water surface profile. The transfer functions (e.g. 
mCS(kz, kh) for horizontal velocity, where CS(kz, kh) = cosh k[h + z)/sinhkh) are 
frequency, depth, (wave number,) and elevation dependent, where each of the 
component Airy waves separately satisfies the linear dispersion relationship. A 

+       Measured WS (ft)  KFSBC error (ft) 
    Design wave (ft) ++,      DFSBC error (ft) 
    u(n,t) (ft/s) .•^'"1\ ,.-- 

Figure 1. Design wave approximation to a measured deep water wave from 
hurricane Camille. Profile comparisons, horizontal velocity and free surface 
boundary condition errors along measured water surface. 
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discrete inverse Fourier transform will predict the time history of the field 
variable. 

Using the FFT algorithm, the numerical procedure is tidy and efficient, 
but linear superposition does introduce some explicit assumptions regarding the 
nature of the irregular sea state and its spatial and temporal evolution. The 
adoption of Airy theory to characterize the separate components assumes that 
the irregular sea state is composed entirely of free modes, each component being 
a freely propagating Airy wave that separately satisfies the linear dispersion 
relationship. There are no bound modes and the FFT algorithm imposes a 
periodicity in time equal to the duration of the measured record. 

In addition, considerable difficulties are encountered at elevations above 
the MWL, which is the strict upper bound of the Airy solution domain. The 
hyperbolic function quotients (CS, SS and CC) become exceptionally large for the 
high frequency (and high wave number) components. Where the record segment 
is a single irregular wave, the frequency resolution is w0 = lit IT, where T is the 
duration of the record and the approximate period. The frequency of the rath 
component is con = n(o0 and the relative depth co*h/g = rfw^hlg rapidly increases 
with n. For coB

2h/g > 2.5, the CS(k^,k„h), SS(k„z,kJi) and CC{k^knh) hyperbolic 
function quotients approach exp(fc„z) or exp(?i2co0

2z/g). For large positive z in the 
crest region, these functions enormously magnify the influence of the high 
frequency components in the Fourier transform or variance spectrum. Kinematic 
predictions in the crest region become exceptionally large and clearly incorrect. 
They generally overflow the high number capacity of digital computer software, 
even in double precision. Any positive value of z is of course outside the strict 
Airy solution domain, and crest elevations are well above even the water surface 
of the smaller magnitude higher frequency components. 

As these high frequency components generally contribute little to the total 
variance of the water surface record, low pass filtering of the Fourier transform 
is a potentially pragmatic response to this difficulty. An application to the 
Camille record segment is shown in Fig. 2. The fundamental frequency is co0 = 
277/13.8 s-1 or/0 = 0.072 Hz and the record Nyquist frequency is 2.0 Hz. Part (a) 
shows the measured water surface record together with the horizontal velocity 
prediction and the KFSBC and DFSBC errors at the measured water surface for 
a frequency cutoff at 0.1 Hz. This includes only a single frequency component o)0. 
It is effectively a design wave approximation using Airy theory, and the free 
surface boundary condition errors are broadly comparable to Fig. 1. Part (b) 
shows the same traces for a 0.15 Hz cutoff. This includes only two frequencies 
(o0 and 2ft)0, yet predictive problems at the crest are already apparent. The 
predicted peak horizontal velocity has risen from 14.8 ft/s (4.5 m/s) to 59.6 ft/s 
(18.2 m/s) and the KFSBC error oscillates off scale. Including also 3w0 increases 
the predicted peak horizontal velocity still further to 114.6 ft/s (34.9 m/s). 

Clearly, Airy wave superposition, even with an arbitrarily determined 
cutoff frequency, has no credibility in estimating kinematics in the crest region 
(Forristall 1985). For elevations below the MWL, linear superposition may 
continue to provide credible predictions of the wave kinematics. 
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LOCAL APPROXIMATIONS 
Methodologies that seek only to represent the local behavior of an irregular wave 
are categorized as local. Given that significant problems such as crest kinematics 
are strongly related to local errors in the free surface boundary conditions, there 
is evident attraction in such an approach. These methodologies compromise 
applicability in a global sense in an effort to achieve fidelity in a local sense. Note 
that this contrasts with the general approach of steady wave theory where local 
fidelity (especially near the wave crest) is perhaps sacrificed in the global interest. 

Stretching Approximations 
One form of local approximation, the so-called 'stretching' method of Wheeler 
(1969), has found considerable favor as a pragmatic approach to the prediction 
of irregular wave kinematics. Recognizing that the failure of Airy superposition 
was contributed by extrapolation of the hyperbolic function quotients beyond the 
upper bound of the Airy solution domain, Wheeler introduced an empirical 
transformation on the local elevation such that it never exceeds the MWL. The 
horizontal velocity was predicted as 

cosh akh 
u(x,z,t) = X (o„ " r\n(x,t) (9) 

where a(x, z, t) = (h + z)/(h + ?/), the transformation depending on the local water 
surface elevation rj(x,t). Though not defined by Wheeler, consistent definitions 
for the balance of the kinematics follow directly from the linear superposition 
approximations. 

The stretching transformation shifts the instantaneous water surface to the 
MWL and avoids the spurious predictions of crest kinematics from direct linear 

Measured WS (ft) 
u(nt) (ft/s) 

—  KFSBC error (ft) 
•—   DFSBC error (ft) 
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(b) Cutoff frequency 0.15 Hz 

Figure 2. Linear superposition approximation to a measured deep water wave 
from hurricane Camille. Horizontal velocity and free surface boundary condition 
errors along measured water surface. 
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superposition. It also remains a linear superposition approximation and a linear 
spectral description of the kinematics. As such, it preserves access to the familiar 
methodologies of (linear) time series analysis in the time and frequency domains 
that are common practice in applications such as the dynamic structural analysis 
of offshore platforms. 

Significant problems nonetheless remain. As a result of the stretching 
transformation, mass and momentum are no longer conserved by the predictive 
equations for the kinematics. The nature of the residual problems however 
remains best illustrated in the context of the free surface boundary conditions. 
The relocation of the local water surface to the MWL does sharply reduce errors 
in the free surface boundary conditions, as Airy theory imposes the free surface 
boundary conditions at the MWL. But the Airy theory does not impose the full 
free surface boundary conditions, and the omitted nonlinear terms are especially 
influential in the crucial crest region for the moderate to extreme waves that are 
common in design. 

Smaller magnitude high frequency components in the Fourier transform 
remain troublesome and Wheeler (1969), for example, adopted a low pass cutoff 
frequency of 0.3 Hz. An application of the stretching methodology to the Camille 
record segment is shown in Fig. 3, which shows the measured water surface 
together with the predicted horizontal velocity, KFSBC and DFSBC traces at the 
measured water surface; frequencies above 0.3 Hz were excluded from the 
Fourier transforms. The 0.3 Hz cutoff includes the fundamental frequency co0 = 
2n/T, where T is the duration of the record segment (and the approximate 
period), together with the first three harmonics 2<w0, 3<w0 and 4a0. With direct 
linear superposition (as shown in Fig. 2), the horizontal velocity predictions in the 
crest region would be extremely large and well off scale, because of the influence 
the 3<w0 and 4<w0 frequencies on the hyperbolic function quotients in the crest 
region. The stretching approximation constrains these spurious contributions and 

40 
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Measured WS (ft) 
u(n,t) (ft/s) 
KFSBC error (ft) 
DFSBC error (ft) 

-20 

Figure 3 Stretching approximation to a measured deep water wave from 
hurricane Camille. Horizontal velocity and free surface boundary condition errors 
along measured WS. Cutoff frequency 0.3 Hz. 
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provides a prediction of horizontal velocity at the water surface that is similar in 
magnitude to the design wave approximation in Fig. 1. Whether or not it is a 
superior approximation is unclear, as both have free surface boundary condition 
errors of significant magnitude. 

The stretching approximation focuses on satisfying the linearized free 
surface boundary conditions at the measured water surface. This is does exactly 
for the KFSBC and approximately3 for the DFSBC. But the nonlinear terms 
become significant, especially the KFSBC term udt]/dx in the crest region. Fig. 3 
shows this error to be comparable in magnitude to the wave height. 

Local Airy Approximations 
Airy wave theory has also been used with locally defined rather than globally 
defined parameters. Airy theory predicts that the water surface profile is 

r\(x,t) = acos(kx-wt + Q) (10) 

where 6 is the phase. At a fixed location, the local parameters are the amplitude 
a, the frequency a> and the net phase kx + 6. 

Nielsen (1986, 1989) localized the definition of amplitude, frequency and 
phase to a moving window of three consecutive water surface observations »/_, 
rjo and rj+, spaced in time by At. Together with Eq. 10, these are sufficient to 
uniquely define the local amplitude, frequency and phase, as 

1 — cos 
At 

kx + d = tan M a = 
cos(fcc + 6) 

(11) 
2T)0    I l2n0sina)At 

respectively. The simplicity of this approach is immediately appealing, especially 
as it accommodates the irregularity by varying the local wave parameters and 
retains the familiarity and computational simplicity of the Airy wave theory. 
Unfortunately, Airy theory remains inadequate in the prediction of crest 
kinematics. Even with the addition of vertical coordinate stretching, it excludes 
the nonlinear terms in the free surface boundary conditions, especially the udt]/dx 
term, which are not small in the crest region of moderate and extreme waves. 

In addition, Eqs. 11 fail frequently along the water surface on application 
to strongly irregular waves. (r]+ + i]-)/2 is approximately >;„, so that the argument 
of the inverse cosine function in the predictive equation for the local frequency 
is approximately one. Arguments less than one are always encountered for an 
exactly linear profile. For a nonlinear wave of approximately permanent form, 
arguments in excess of one are computed in the neighborhood of the profile 
MWL crossings. A local frequency cannot be estimated; neither can the local 
phase and amplitude be estimated, as they depend on the frequency estimate. 
More significantly perhaps, similar problems are encountered at inflection points 
and around local minima and maxima in the crest and trough regions, such as are 
observed in the Camille trace. 

3But exactly at the smoothed (i.e. after low pass frequency filtering) location of the water 
surface. 
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Local Fourier Approximation 
As outlined previously, a rational approximation to irregular waves should satisfy 
the field equation (Eq. 1), the bottom boundary condition (Eq. 2) and the 
complete form of both free surface boundary conditions (Eqs. 3 and 4); the 
permanent form and spatial and temporal periodicity constraints are not 
appropriate. Maximum advantage, at least from a theoretical viewpoint, can be 
made of a local approximation that does not compromise on these requirements, 
especially on the free surface boundary conditions along the actual water surface. 
However, measurements of rj(t) at a fixed x location provide no information on 
drj/dx. Some compromise is necessary in representing this term, but it should not 
be allowed to dominate the solution methodology. 

A local Fourier approximation (Sobey 1992) provides a pragmatic and 
rational response to these constraints. As a local approximation method, it 
enhances fidelity in representation of the crucial free surface boundary conditions 
and minimizes the influence of the necessary spatial evolution assumption. 
Further, it is a generalization of the widely successful (but global) Fourier 
approximation method for regular waves, which has almost universal applicability 
for both deep and shallow water waves and for coflowing uniform currents. The 
methodology is extended to complete irregular water surface profiles by means 
of a moving window of duration T, which is small in comparison with the local 
zero-crossing period. 

The basis of the method is the representation of the velocity potential 
function within each window as 

•to) = UEx + J:^COSh7^:Z)sin;(fcc-o)0 (12) 

This representation is familiar from global Fourier wave theory (e.g. Sobey 
1989a), where t/E is the spatially-uniform Eulerian current, h is the water depth, 

Y4J are the Fourier coefficients, k is the wave number, co is the wave frequency 
and (x,z) is the spatial position in the fixed frame. The current and the water 
depth define the local propagation medium and must be specified. In Fourier 
wave theory, co, k and the Ap together with the Bernoulli constant B , are a 
defining set of parameters that have unique values. In the local Fourier 
approximation method, the defining set of parameters is no longer constant but 
varies from window to window. 

Within each window, the Eq. 12 basis functions exactly satisfy both the 
field equation throughout the fluid domain and the bottom boundary condition, 
whatever the numerical values of the defining set of parameters. The defining set 
of parameters is determined within each window to best satisfy the free surface 
boundary conditions at the measured elevations of the free surface within the 
window. In addition, the Bernoulli constant in the DFSBC is not a free 
parameter, being related to the other solution parameters through an exact 
integral relationship. In a global approximation, this constraint is implicit in 
imposition of the DFSBC along the entire water surface from crest to trough. 

For each window solution, the given information is the local water depth 
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h and the local coflowing uniform Eulerian current UE, together with a set of 
water surface elevations t]„ where the / = 1,2,.../ are distributed over the local 
window of duration T. 

The temporal and spatial gradients of the water surface in the KFSBC 
equations remain to be specified. Temporal gradients can be estimated from the 
water surface time history. Cubic spline interpolation among the measured water 
surface nodes conveniently provides consistent and smoothly varying estimates 
of both t] and dt]/dt. The spatial gradient dt]/dx is estimated from a locally steady 
assumption, which imposes Eq. 6 in each local window and relates the spatial and 
temporal gradients as 

ill = -!iH. (14) 
dx C dt 

where C = m/k in the local window. The steady profile assumption is not imposed 
beyond the local window and does not dominate the solution methodology, as it 
does for example in the global Fourier-style methodologies. 

This equation set is nonlinear and implicit. The primitive unknowns in the 
local window are co, k, kx and the Ajt of which there are /. There are two 
independent equations potentially available at each of the t] observations within 
the local window, of which M are selected for the numerical solution. The 
problem is uniquely defined for M = 3 +/ and overspecified for M > 3 +/. In 
recognition of the certain existence of error bands about the measured water 
surface elevations, some overspecification is advantageous. Though significantly 
complicated by the error bands, numerical solution considerations are similar to 
those encountered in the Fourier steady wave theory; they are discussed in detail 
by Sobey (1992). 

From a strictly numerical viewpoint, the only constraint on the choice of 
order / and the local window width r is the M > 3 + / requirement. There is a 
clear expectation however that an appropriate choice of these parameters will be 
dependent on the physical nature of the water surface time history together with 
the local resolution of the measured record. With cubic spline interpolation of 
the water surface record, the time location of individual windows is independent 
of the order and the window width. Nonetheless, adequate resolution must be 
provided to capture the temporal variation in the near-surface kinematics. 

An application of this methodology to the Camille record segment is 
shown in Fig. 4. The free surface boundary condition errors are substantially 
reduced, especially in the crest region where interest is often centered. Overall, 
errors are small with respect to the wave height, but residual errors persist at 
profile zero-crossings and around local minima and maxima in the trough region. 

Local Polynomial Approximation 
Fenton (1986) introduced a local polynomial approximation for the interpretation 
of submerged pressure records. With some changes to reflect the different 
context, the local polynomial methodology can be extended to irregular water 
surface records. 
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Figure 4 Local Fourier approximation to a measured wave from hurricane 
Camille. Horizontal velocity and free surface boundary condition errors along 
measured water surface. J=l, T=0.1 S. 

The wave field is assumed to be locally steady with local phase speed C, 
such that variations with x and t in the fixed frame can be combined in a locally 
steady frame as X = x - Ct, as in steady wave theory. The local solution is 
represented by a truncated polynomial series for the complex potential function 

(15) 

where the ai polynomial coefficients are real. These basis functions satisfy the 
field equation and bottom boundary condition exactly. The polynomial 
coefficients would be determined numerically to best fit the kinematic and 
dynamic free surface boundary conditions at the known water surface nodes r\„ 
where the i = 1,2,...1 are distributed over the local window of duration T. 

The specific equations defining the window solutions closely parallel those 
for the local Fourier approximation. As a> and k are involved in the local 
approximation, the local phase speed C is an explicit unknown. Given an 
estimate of the mean fluid speed in the locally steady frame, such as ^(0,0)/h 
(Fenton 1986), the phase speed is estimated from a local dispersion relationship. 

A polynomial variation in the vertical is a feature of the steady Cnoidal 
wave theory, and it would be expected that this approximation would be most 
appropriate in shallow water. It may be less satisfactory for deep water waves, 
where the vertical variation tends to exponential and local Fourier approximation 
may be more suitable. The local polynomial and Fourier approximations appear 
complementary. 

CONCLUSIONS 
Even in regular wave theory, errors are centered on the free surface boundary 
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conditions. For irregular wave kinematics, a rational predictive capability should 
give particular attention to the complete nonlinear kinematic and dynamic free 
surface boundary conditions. Four approaches to irregular wave kinematics, the 
global design wave method, global linear superposition, local Wheeler stretching 
and the local Fourier approximation method, have been compared for a very 
large measured wave from hurricane Camille. Free surface boundary condition 
errors are comparable to the wave height for the design wave and Wheeler 
stretching methods. They are sharply reduced by the local Fourier approximation 
method, though not eliminated. Linear superposition fails completely in the 
estimation of surface and near-surface kinematics. 
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