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l.  introduction 

Propagation and shoaling of irregular wave trains in 
shallow water is a nonlinear process, where substantial 
cross spectral energy transfer can take place in rela- 
tively short distances. This process involves the gen- 
eration of bound sub- and super-harmonics and near-res- 
onant triad interactions, which are defined as the 
energy exchange between three interacting wave modes. 

In the literature it is common practice to dis- 
tinguish between bound waves and resonant free triads. 
The theory for bound waves is based on the assumption of 
a one way transfer of energy to generate higher and 
lower harmonics which are phase locked to the primary 
wave train. In reality, however, a feed back of energy 
to the primary frequencies will occur leading to near- 
resonant interactions. 

This phenomena has previously been treated by e.g. 
Freilich and Guza (1984) on the basis of the classical 
Boussinesq equations. It turns out, however, that the 
accuracy of the linear dispersion relation for higher 
wave numbers is of major importance for the exchange of 
energy even in shallow water and for this reason we rec- 
ommend as governing equations a special form of the 
Boussinesq equations. These were derived by Madsen et 
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al. (1991a) on a horizontal bottom and here we shall 
extend these equations to a mildly sloping bottom. 

The paper will contain a Fourier analysis of the 
inherent linear shoaling properties, transfer functions 
for bound sub and super-harmonics and a discussion of 
two cases of triad interactions. 

2.  New Boussinesq Equations 

The applicability of various forms of the Boussinesq 
equations expressed in terms of e.g. the bottom vel- 
ocity, the surface velocity, the depth-averaged velocity 
and the depth-integrated velocity was discussed by Mad- 
sen et al. (1991a). With the objective of improving the 
linear dispersion characteristics a new set of equations 
were derived in two horizontal dimensions. As the first 
step an improved linear dispersion relation was obtained 
by combining a polynomial expansion of Stokes first 
order theory with Pade's approximant. As the second step 
the classical Boussinesq equations were modified by in- 
voking the linear long wave approximation and using the 
method of operator correspondence. 

The equations presented in this paper represent an 
extension of the approach by Madsen et al. (1991a), by 
including first derivatives of the sea bed. The result 
will be a set of two-dimensional equations which incor- 
porate excellent linear dispersion characteristics and 
are applicable to irregular wave propagation on a slowly 
varying bathymetry from deep to shallow water. 

The starting point for the derivation is the classi- 
cal Boussinesq equations derived by Peregrine (1967). 
These equations, which are valid on a variable bathy- 
metry, are reformulated in terms of depth-integrated 
velocity variables, i.e. flux components, and are sim- 
plified by neglecting higher derivatives and products of 
derivatives of the still water depth h. First deriva- 
tives of h are considered small but are included in the 
formulation. 

It is a classical procedure to simplify higher order 
terms in the Boussinesq or KdV equations by introducing 
the linear long wave approximations (see e.g. Mei, 1983; 
Madsen et al., 1991a). As an example P^ type terms can 
be replaced by S,^ type terms by the use of this method. 
In shallow water it makes no difference, but in deeper 
water the form of the Boussinesq terms is critical for 
the accuracy of the linear dispersion relation. Instead 
of replacing P^ with S^ type terms we use a different 
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approach. Spatial differentiations of the linear long 
wave equations lead to expressions containing the terms 
pxxu Pxytf Qyyt and Qxyf Since these expressions are effec- 
tively zero in shallow water we add them to the original 
Boussinesq equations and obtain the following new set of 
equations: 
st + px + Qy = ° (2.1a) 

4 * & \   + gdSx + 1^=0 (2.1b) 
' v 

5), • (3). *-^ * •> - ° <2-lc) 

where subscripts x, y and t denote differentiation with 
respect to space and time, d is the total water depth, h 
is the still water depth, S is the surface elevation, P 
and Q are the depth-integrated velocity components, and 
^! and \[/2  are the new Boussinesq terms defined by: 

^ = - (B + |) h*   (P^t + 0„yt)   ~ B9h*   [Sm  + Sw) 

" ^x (~Pxt 
+ \Qyt + ZBghS^ + BghS^ (2.2a) 

" hhy (|oxe + BghSx 

*2 = - \B * -|) h>  (0,yt * PtyJ   - Bgh*  (Sw + Sw) 

- hhy [±Qyt + |pxt + 2BghSyy + BgASj£X) (2. 2b) 

" hh* (\pyt + SS*5*y) 

Except for the slope terms proportional to hx and hy 
these expressions are identical to the Boussinesq terms 
presented by Madsen et al. (1991a). B is the linear dis- 
persion parameter, which will be determined in the fol- 
lowing section. Further details concerning the deriva- 
tion, and a description of the numerical method used to 
solve them, will appear in Madsen and Sorensen (1992b). 
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3.  Linear dispersion relation and shoaling properties 

A Fourier analysis of the linearized one-dimensional 
version of the new Boussinesq equations will be made 
with the objective of studying the linear dispersion 
relation and the linear shoaling gradient embedded in 
the new equations. 

As a starting point for the analysis, the one-dimen- 
sional wave equation corresponding to (2.1a-c) combined 
with (2.2a-b) is derived. By using (2.1a) linear terms 
containing P are eliminated and secondly (2.1a) and 
(2.1b) are cross-differentiated and subtracted. This 
leads to: 

L = M + NM (3.1a) 

where 

(3.1b) L = ^xxct Stt - ghS„ * Bgh3Sxxxx - JB + -|) h2Sx 

M=[gSx +  (2B + ±)hSxtt - SBgtfS^ ) hx (3.1c) 

(3.Id) XT = 1 gS* + II 
2 y d 

In the following linear analysis the non-linear oper- 
ator N is neglected and we shall look for solutions to 
(3.1a) on the form 

S (x,t)   = AU)ei(ot-»W) (3.2) 

where w is the cyclic frequency, A is the local wave 
amplitude and tp is the phase function, which is related 
to the local wave number by 

<PX = k(x) (3.3) 

The water depth, the wave number and the wave ampli- 
tude are considered to be slowly varying functions of x 
and consequently products of derivatives and higher 
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derivatives of these quantities will be neglected in the 
following. 

The linear dispersion relation is obtained by insert- 
ing (3.2) into (3.1) and neglecting all x-derivatives of 
h, k and A, 

-G)2 + ghk2  + Bgh3k4 - (B + -i] k2h2u>2  = 0 (3.4) 

Alternatively this can be formulated as: 

c2   = 1 + Bk2h2 

Zh~   l +  (B* j)  k2h2 (3-5) 

where c is the wave celerity defined by c = u/k. 

As shown by Madsen et al. (1991a) various classical 
formulations of the Boussinesq equations all lead to 
(3.5) with different values of B: using the surface vel- 
ocity as dependent variable leads to B = -1/3, the bot- 
tom velocity leads to B = 1/6 and the depth-averaged or 
depth-integrated velocity leads to B = 0. By far the 
best agreement with Stokes first order theory is 
obtained by using the value B = 1/15, which is deter- 
mined by matching (3.5) with a Taylor expansion of the 
Stokes first order celerity combined with Pade's expan- 
sion technique. This value was origionally suggested by 
Witting (1984). Madsen et al (1991a) analyzed the accu- 
racy of (3.5) for the various possible values of B and 
concluded that the new Boussinesq equations combined 
with B = 1/15 provide excellent linear dispersion char- 
acteristics for values of h/L0 as large as 0.5. 

Proceeding with the Fourier alalysis and collecting 
terms to the next order in (3.1) includes the terms pro- 
portional to the first derivatives of h, k and A. The 
frequency w is eliminated by the use of (3.4) and dif- 
ferentiation of this equation also makes it possible to 
eliminate terms proportional to kx/k. After algebraic 
manipulations we get the expression: 

A h 
^r = -v 3 (3.6) 
A T h 

where 7 is the linear shoaling gradient. The expression 
for 7 reads: 
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•>•* 
1  +   (4B - l)k2h2 + (6B2 - -|sjir4A 

4B3 + AB
2
 + ±B\k6h6 + (s4 - ~B2\kah 

3 

(3.7) 

[l + 2Bk2h2  + (B2 + ±B\k*h' 

The reference linear shoaling coefficient based on 
Stokes first order theory is derived by using the con- 
cept of conservation of energy flux. After differen- 
tiation and algebraic manipulations this leads to: 

Ystokes  _ 2kh(sinh2kh)  + 2k2h2  (l-cosh2kh) ,3  8> 
(2kh + sinh2kh)2 

A comparison between (3.7) and (3.8) as a function of 
h/Lo requires that (3.7) is combined with the Boussinesq 
dispersion relation (3.4), while (3.8) is combined with 
Stokes dispersion relation. The result is presented in 
Fig. 1 and it can be concluded that the standard Boussi- 
nesq equations with B = 0 lead to major discrepancies 
for h/I^ larger than 0.10, while B = 1/15 has a remark- 
able effect and results in an excellent agreement with 
Stokes first order theory for h/L0 as large as 0.50. 

4.  Bound waves in shallow water 

Irregular wave trains travelling in shallow water can 
generate and sustain a considerable amount of bound har- 
monics, which travel phase-locked to the primary wave 
train. At locations, where drastic changes of the wave 
heights occur e.g. due to diffraction or wave breaking, 
the bound waves can be released and proceed as free 
waves. This may cause harbour resonance, drift motion of 
moored vessels and surf beats. The phenomena of bound 
waves has been discussed in numerous papers in connec- 
tion with the reproduction of regular and irregular 
waves in physical wave flumes (e.g. Barthel et al., 1983 
and Sand and Mansard, 1986). It has been concluded that 
linear boundary conditions often are insufficient and 
should be replaced by second order boundary conditions 
including the effect of bound sub- and super-harmonics. 
This problem is important for physical waves flumes and 
equally relevant for numerical models solving non-linear 
equations. 
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Fig.   1  Linear   shoaling   gradient,    y   defined   by    (3.6),    (3.7)    and 
(3.8). 

In this section transfer functions for second order 
bound sub and super-harmonics will be presented on the 
basis of the new Boussinesg equations. The derivation is 
straight forward and is based on a perturbation solution 
to the wave equation given in (3.1a-d). As a start we 
consider the forcing due to a simple first order wave 
group made up of just two frequencies wn and um at a 
constant depth. Each of the two wave components are con- 
sidered to be solutions to the linearized problem L{Sa>} 
= 0 where L is defined by (3.1b). The next step is to 
look for second order solutions to L{S<2)} = N„{S(1)} where 
N is defined by (3.Id). The first order bichromatic wave 
train will force a second order wave train consisting of 
four new frequencies: one sub-harmonic and three super- 
harmonics. The four second order wave numbers are deter- 
mined from combinations of k„ and km, and they do not 
satisfy the linear dispersion relation, which implies 
that these waves are bound or phase-locked to the first 
order wave train. For general irregular wave trains con- 
sisting of many wave components, the contributions from 
all pairs of frequencies inherent in the wave train can 
be summed up (see Sand and Mansard, 1986). 

The second order transfer function derived from the 
new Boussinesq equations reads: 

",l 

wE 

ghkl (Vz + G)„o>m / (ghknkm) ) 

ghkl - Bgh3k* + (B + l/3) h2u2
pk* 

(4.1) 
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where wp = pAw denotes the discrete sub or super-har- 
monic frequency receiving energy transfer from the pri- 
mary frequencies wn = nAu and wm = mAw. For sub-har- 
monics (4.1) should be used with n = m + p and k,, = y^+j, 
- k,,,. For super-harmonics n = p-m and k,, = k,,_m + k,,,. 
Further details and the complete formulation of second 
order boundary conditions for irregular waves can be 
found in Madsen and S0rensen (1992a). 
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Fig.   2  Transfer     Functions     for     super-harmonics     and     for     sub- 
harmonics . 
—      Boussinesq transfer function determined by (4.1)  B-l/15 
     Ratio between  the Boussinesq  transfer and the   transfer 

function determined from the Laplace equation. 

Fig. 2 shows the transfer function for the super-har- 
monics up generated by the interaction between wm and wp. 
m, and for the sub-harmonics cop generated by the inter- 
action between wffl and wm+p. G+ and G" determined by (4.1) 
are   shown   as   full   lines   in   Fig.    2,   while   the   ratios 
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between G and the transfer functions derived from the 
Laplace equation (Sand and Mansard, 1986) are shown as 
dotted lines. Generally, the Boussinesq equations tend 
to underestimate the super-harmonics while the sub-har- 
monics can be underestimated as well as overestimated. 
Discrepancies up to 40% are noticed in the shown trunc- 
ated spectrum, but typical errors are less than 10%. 

An application of the theory is presented in Fig. 3, 
where time series of surface elevations are generated 
from a JONSWAP spectrum with y = 3.3. The water depth is 
10 m, the significant wave height is 2.0 m and the peak 
period is 9.0 s. The linear wave train is generated with 
random phases and with energy in the interval 0.05 hz to 
0.20 hz. The maximum frequency corresponds to h/L0 = 
0.25 which is within the range of application of the new 
Boussinesq equations. The bound sub-harmonics cover the 
interval the 0.001 hz to 0.15 hz, while the bound super- 
harmonics cover the interval from 0.10 hz to 0.40 hz. 

The consequence of neglecting the bound wave com- 
ponents in the input time series will be the release of 
spurious free wave components of the same order of mag- 
nitude. In this situation the free sub-harmonics are by 
far the most critical, since they can penetrate, e.g. 
into harbours almost without being reduced in magnitude 
and result in harbour resonance or at least in a major 
overestimation of the local wave disturbance. 

5.  Triad Interactions 

The theory of bound waves assumes an equilibrium 
situation where the non-linear wave train propagates 
without changing its form. In reality and especially in 
shallow water a substantial cross spectral energy trans- 
fer will take place due to triad interactions, which 
describe the exchange of energy between three interact- 
ing wave modes (see e.g. Freilich and Guza, 1984) . 

The simplest example of triad interactions occur, 
when first order monochromatic boundary conditions are 
applied in shallow water. This will unintentionally gen- 
erate spurious free second order waves in addition to 
the bound second order waves, leading to an energy 
exchange between the primary wave frequency and its 
super-harmonics. A numerical example is presented in 
Fig. 4a, which shows the computed surface elevation at 
eight equidistant times within one wave period as a 
function of the distance from the open boundary. The 
corresponding spatial variation of the amplitudes of the 
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first three harmonics is obtained by FFT-analysis of the 
computed time series and is shown in Fig. 4b. 
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Fig.   3  First  order irregular waves and their correspondingly bound 
sub-harmonics. 
Boussinesq Eq.  with B =  1/15.   Water depth =  10 m. 
JONSWAP  SPECTRUM with H, =  2.0 m.   Tp =  9.0  s,   y =  3.3. 

As discussed in Madsen et al. (1991b) the energy 
transfer can be shown to depend strongly on the phase 
mismatch, which is defined by: 

6* km * K (5.1a) 

K -*„ (5.1b) 

This calls for an accurate description of the linear 
dispersion relation and in connection with this it 
should be emphasized that even when the primary wave 
corresponds to very shallow water in terms of h/L0, this 
is not necessarily the case for the higher harmonics. 
Hence, by using classical types of KdV or Boussinesq 
equations, the estimate of the phase mismatch may be 
rather inaccurate. 
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The new Boussinesq equations with B = 1/15 improve 
the accuracy considerably and as an example Fig. 5 shows 
a comparison with the measurements of Chapalain et al. 
(1992). The agreement between the measurements and the 
FPT analysis of the time domain simulations is seen to 
be excellent, except for the beat length of the third 
harmonic, which is slightly underestimated. More 
examples of harmonic generation forced by linear mono- 
chromatic and bichromatic boundary conditions on a con- 
stant depth can be found in Madsen and S0rensen (1992a). 

The final example is a study of non-linear re- 
fraction-diffraction on a semi-circular shoal. This was 
studied experimentally by Whalin (1971) for wave periods 
of l, 2 and 3 seconds. We shall concentrate on a dis- 
cussion of the case of 1 second waves, which has not 
previously been treated by the use of Boussinesq equa- 
tions. The value of h/L0 varies from 0.29 at the toe of 
the shoal to 0.096 behind the shoal. An FFT analysis of 
time series in each grid point along the centre line has 
been made and the resulting spatial evolution of first 
and second harmonics is compared with Whalin's experi- 
mental data in Fig. 6. A considerable scattering in the 
data is seen in front of the shoal but behind the shoal 
the agreement between the data and the new Boussinesq 
equations with (B = 1/15) is acceptable. Reasonable 
agreement is also found between the new Boussinesq equa- 
tions and the results obtained by Liu and Tsay (1984), 
who solved the non-linear Schrodinger equation. Finally 
the classical Boussinesq equations (i.e. B = 0) are seen 
to fail completely by predicting an unrealistic decrease 
of the first harmonic, a discrepancy which can be 
explained by the variation of the linear shoaling gradi- 
ent in Fig. 2. 

In fact this example demonstrates that Fig. 2 should 
be taken quite seriously as a measure of the range of 
application of different types of Boussinesq equations. 
A common mistake is that the accuracy of the wave celer- 
ity is taken as the practical measure, in which case a 
5% error restricts the use of the standard Boussinesq 
equations to approximately h/L0 = 0.22. However, accord- 
ing to Fig. 2 this is clearly much too optimistic in 
case of a variable bathymetry and the shoaling falsi- 
fication increases rapidly for h/L0 exceeding 0.10. This 
emphasizes the importance of using the new Boussinesq 
equations presented in this paper, in which case h/L0 as 
large as 0.5 can be considered. 
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Fig.   4 Triad interactions due to first order monochromatic boundary 
conditions by time domain Boussinesq model  with B =  1/15. 
Water  depth  = 0.40  m,   T  = 2.5  s,   H  = 0.084  m,   grid  size  = 
0.04 m,   Time step  = 0.01953  s. 
a) Wave envelope 
b) Spatial variation of the amplitudes for the first three 

harmonics. 
1:  f, =  0.40 hz,  2:  f2  = 0.80 hz,  3:  f3  = 1.20 hz. 

6.  Conclusion 

The paper presents a new set of Bousssinesq equations 
applicable to irregular wave propagation on a slowly 
varying bathymetry from deep to shallow water. It can be 
concluded that the new equations are capable of describ- 
ing the phenomenon of harmonic generation and triad in- 
teractions with an accuracy which is significant better 
than what can be obtained on the basis of the classical 
forms of the Boussinesq equations. 
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Fig. 5 Triad interactions due to first order monochromatic boundary 
conditions. Water depth = 0.40 m, T = 3.5 s, H = 0.084 m, 
Grid size = 0.06 m.  Time  step = 0.02734  s. 
       Time domain Boussinesg model with B=l/15. 
•f ",  °      Measurement  by  Chapalain,   Cointe   and  Temperville 

(1991). 
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Fig. 6 Refraction-diffraction on a semi-circular shoal. Spatial 
variation of the amplitudes for the first •three harmonics 
along the  center line. 
0:  Experiment,  Whallin   (1971),   1:  Liu and Tsay  (1984), 
2:  Boussinesg B=l/15,   3:  Boussinesg B=0. 
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