
CHAPTER 31 

EVALUATION OF NUMERICAL MODELS ON 
WAVE-CURRENT INTERACTIONS 

Jung L. Lee1 and Hsiang Wang ; 

Abstract 
Five comtemporary numerical models on wave-current interactions are evaluated in this 
paper. The bases of evaluation are mathematical exactness, degree of computational dif- 
ficulty and practical applicability in terms of the abilities of handling shoaling, refraction, 
diffraction, reflection and wave-current interaction. Recommendations are given in matrix 
form on the relative merit of each model. 

1 Introduction 
In the past two decades, we have witnessed remarkable progress in modeling nearshore hy- 
drodynamics by numerical techniques. Prediction of nearshore waves took a new dimension 
with the introduction of the mild slope equation by Berkhoff (1972) which is capable of 
handling the combined effects of refraction and diffraction. Since then significant progress 
has been made in computational techniques as well as model capabilities, notably by Rad- 
der (1979), Copeland (1985), Ebersole (1986), Yoo and O'Connor (1986a), and Dalrymple 
et al. (1989). 

Prediction of nearshore, wave-induced currents has also advanced considerably since 
some of the earlier development by Noda et al. (1974) and Ebersole and Dalrymple (1979). 
Both of these earlier models were driven by a wave refraction model but with no current 
feed back. More recently, Yoo and O'Connor (1986b) developed a wave-induced circulation 
model based upon what could be classified as a hyperbolic-type wave equation; Yan (1987) 
and Winer (1988) developed their interaction models based upon parabolic approximation 
of the wave equation. 

Five wave and current coupled models were selected for evaluation. Of the five wave 
models, four were selected from existing literature and one was developed by the authors. 
The main differences among the 5 models are their governing wave equations and the as- 
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sociated numerical methods; they include two hyperbolic types, two elliptic types, and one 
parabolic type. Each can be derived from the mild slope equation given by Kirby(1984), 
with varying degrees of approximations. The current model is governed by the depth- 
integrated momentum and continuity equations, much the same as given by Ebersole and 
Dalrymple (1979). 

In this paper, the emphasis is on evaluating wave models and their suitability for wave- 
current interaction modeling. Thus, the current condition is given as input rather than 
coupled with the circulation model. The evaluation of fully coupled models has been pre- 
sented in Lee and Wang (1992). 

2 Wave equations 
The governing equations of the 5 models are all derivable from the linearized mild slope 
wave-current interaction equation given by Kirby (1984) as follows: 

S + (v'u) m ~ v' (ccsv^ + ^ ~ k2cc'9)4> = o (i) 

where, <j> is the surface velocity potential 
C is the relative phase velocity {o Ik) 

Cg is the relative group velocity (da/dk) 
a is the intrinsic angular frequency (<r2 = gk tanh kh) 
u> is the apparent angular frequency 
k is the wave number 
h is the water depth 
U is the steady current velocity vector (u,v). 

The intrinsic frequency and  wave number for progressive waves are determined by  the 
Doppler equation 

w = od + U • K 

where a^ and K are, respectively, the intrinsic angular frequency and wave number vector 
with the inclusion of diffraction effect. Ignoring the mean surface gradient in the above 
equation yields the conventional Doppler equation (see Eq.(9)). If any reflective wave exists 
in the current field, the intrinsic frequency and wave number of the reflected wave should 
be determined by a separate Doppler equation. Therefore, wave reflection effects may be 
included by superposition. 

2.1 Hyperbolic-type model I (HM I) [Ohnaka et al. 
The governing equations are a pair of first-order equations which constitute a hyperbolic 
system similar to the shallow water wave equations. Ito and Tanimoto (1972) first proposed 
the approach and Copeland (1985) completed the formulation through the application of 
the mild slope equation. Ohnaka et al. (1988) extended the formulation to a wave and 
current coexisting field to obtain: 

[' + 5<7?-< + V.(l7,) + V.(^Z*) = 0 (2) 
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The unknowns to be solved are the wave surface elevation,);, and the gradient of surface ve- 
locity potential, V<j>. It can be shown that in the presence of strong currents these equations 
will lead to conditions inconsistent with the conservation equation of wave action given by 
Brethorton and Garett (1968). 

2.2 Hyperbolic-type model II (HM II) [Yoo et al, 1986b] 
In this second model the governing equations are based on kinematic and dynamic conser- 
vation equations of wave properties averaged over both a wave period and a wave length; 
they are of the following forms: 

£ + (C,f + U) • VK + K • V, + _^V, - ^V[V^)] = 0 (4) 

!(£) + V.[(C,| + tf)£] = 0 (5) 

Eqs.(4) and (5) are used to solve for K and a2/a. 

2.3 Elliptic-type model I (EM I) 
The surface velocity potential is now assumed to be a harmonic function of time expressed 
as: 

4>(x,t) = 4>(x)e-iwt 

where <^(x) is the surface potential in steady state. Substituting the above equation into 
Eq.(l) gives, 

-iw{2U • Vj> + <£(V • U)} + (U • V){U • V<£) + (V • V){U • Vj>) 

-V • (CCgV4>) + (a2 - u2 - k2CCg)j> = 0 (6) 

The above equation together with the Doppler equation permits us to solve for ^(x). 

2.4 Elliptic-type model II (EM II) [Jeong, 1990] 
The surface velocity potential is approximated by wave-period and wave-length averaged 
quantity as, 

0(x, 4) = A^y* = A(x)ei{f K-<*x-"*) (7) 

Substituting the above equation into the linearized free surface boundary conditions, we 
obtain 

A   =    -i—a (8) 

°l   =   S-frA-Vfj (9) 

Where u^ is the intrinsic angular frequency with diffraction effect as mentioned earlier, and 
fj is the mean surface elevation. The second term in Eq.(9) can be usually be neglected. 
Substituting Eqs.(7-9) into Eq.(l) and after some manipulation the real and imaginary parts 
yield two equations; the real part is the energy conservation equation of elliptic type, 

V • [(Cgj + U)£] = 0 (10) 
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and the imaginary part is the Eikonal equation, 

CCg-K2~V-(CCgV--) 
a a 

lCCg- = 0 
a (H) 

Since there are 3 unknowns, a, Kx and Ky, another equation expressing the irrotationality 
of wave number is introduced. 

V X K = 0 (12) 

2.5 Parabolic-type model (PM) [Winer,  
The parabolic approximation to the elliptic-type equation of harmonic wave motion (Eq.6) 
is derived by 1) splitting the surface potential into two components (<j> = <j>+ + <j>~) and 
2) assuming that the waves are oriented in the x-direction, thus, allowing ky = 0. There 
were several approaches with varying degrees of approximations to arrive at various terms 
of parabolic equation. The version suggested by Winer (1989) has the final form, 

a(Cgx + «)— + i(k0 - kx){Cgx + u)A' + T^KCffx 

i d .^ dA\    todv A,        dA! 

2Ty
{CC9-^)-2¥yA-^l^ 

• «)K = 

(13) 

where 

A! • 1+,,-iK- Cgx = C#y 

3 Numerical schemes 
The numerical methods of all models fall under the category of finite difference method 
(FDM). Table 1 summarizes the numerical schemes as well as the unknowns of each model. 
The downwave and side boundary conditions are summarized in Table 2. A brief description 
of the numerical scheme of each model is given here. 

Table 1 

Model Unknowns Numerical scheme 

HMI rj and V<j> FDM on a staggered grid system 
HMII a and K FDM on a staggered grid system 

EMI complex 4> Combined Gragg's method-FDM 
EM II a, K and 0 Generalized Lax-Friedrich FDM 
PM complex A' Crank-Nicholson FDM 

Table 2 

Model Downwave B.C. Side B.C. 
HMI Method of chracteristics VyTj   =    ikyTj 

HMII Vxa = 0, VXKX = 0 Ky given by Snell's law 
EMI - Vy(j> = iky(f> 

EMU Vxa = 0, VJ = 0 8 given by Snell's law 
PM - VyA' = ikyA' 
Z>=finite difference operator 
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3.1 Hyperbolic model I 
The numerical technique is based on Ohnaka et al. (1988). However, the technique of treat- 
ing boundary conditions and calculating wave angles has been improved by the introduction 
of the complex variables as given in Table 2. For details see Lee and Wang (1992). 

In the case of wave-current interaction, the determination of wave angle is very impor- 
tant because phase speed, group velocity and intrinsic frequency are determined through 
the dispersion equation which contains the scalar product of the current vector and the 
wave number vector. The wave angle is calculated at the center of each grid location by 
the approximation 

72e(V„<£/77) 

1le(Vx<i>lrj) 

and the wave height is calculated by 

II = 2^TZe{rj}2 + Zm{7?}2 

3.2 Hyperbolic model II 
The numerical scheme used here is the same as detailed in Yoo and O'Connor (1986a). The 
wave amplitude is specified at the center of the grid whereas the wave number vector is 
situated at the side of the grid. 

The wave angle is calculated at the center of each grid location 

Kx 

where the wave number vector indicates the value at the center of each grid and the wave 
angle is measured from the x-axis. 

3.3 Elliptic model I 
The numerical scheme was developed by the authors. Here, Eq.(6) is treated as an or- 
dinary differential equation in x while letting the y-direction differential operator, V, be 
approximated by a finite difference scheme, 

(u2 - CCg)<j>xx + {-2ium + 2uux + uyv -f uvy - (CCg)x}4>x 

+2uvVy(<l>x) + {-2iuv + 2vvx + uvx + uxv - (CCg)y}Vy(<f>) 

+(v2 - CCg)Vyy{4>) + {~Mux + vy) + a2 - u>2 - k2CCg}4> = 0 

in which subscripts indicate the differentiations. 

The above equation is then converted into a pair of first-order equations by the simple 
expediency of defining the derivative as a second function. 

[{—2iijju + 2uux + uyv + uvy - (CCg)x}<j>i 
u2 - CCg 

+2uvVy(j>i) + T(4>)] 
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where 

JF(>)    =    {-2iu>v + 2vvx + uvx + uxv - {CCg)y}Vv4> + (v2 - CCg)Vyy<j> 

+{-iu(ux + vy) + <T
2
 - ui2 - k2CCg)4> 

These ordinary differential equations are solved numerically using Gragg's method for which 
the main algorithm for a differential equation <f>>(x) = f(x,<f>(x)) is given as 

2/1    =    <pi-i + hf(xi-i,<f>i-i) 

W+i    =    yj-i + 2hf{xi-i+jh,yj) j = l,2,..,n-l 

4>i    =    (yn + yn-i + hf(xi,yn))/2 

where h is a subgrid space defined as h = Ax/n. 

The upwave boundary condition is merely the specified complex tj> determined by the 
incident wave amplitude and wave angle. The side boundary conditions are either non- 
reflective or reflective. The non-reflective boundary condition can be specified by Snell's 
law in the absence of diffraction, 

<f>y = iky<j> where ky = ksm6 = k0smd0 

The reflective boundary condition is expressed as 

<j>y = 0 i.e. ky = 0 

If there is any reflective structure posed in the y-direction, the direction of the reflected 
waves is the mirror image of that of the incident wave. Since the unknown in this model is 
the complex surface potential, the reflected wave field can be easily specified as the conjugate 
by tracing the computation backward. 

The wave angle is calculated by 

Kx 

where 

with 

Kv = ViS 

S    =    K-x = tan-1[Im(0)/72e(^)] 

V±S   =    [S^-S^/Ay   or   [Sj-S^/Ay 

The wave height is calculated easily by 

H = 2JlZe{~4>}2 + lm{-4>}2 

3.4 Elliptic model II 
By introducing wave angle, 0, Eq.(ll) can be expressed as, 

AK2 - C = 0 
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where, 

A = CCg- 
i 

The solution of K is simply, 
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C = V • (CCgV-) + k2CCg- 

The generalized Lax-Friedrich method is employed to solve Eqs.(lO) and (12). Both 
unknown, 0 and a, are solved row by row using an explicit FDM (Ebersole et al. (1986) or 
Jeong (1990)). 

3.5 Parabolic model 
Eq.(13) is solved by the Crank-Nicolson scheme using a double sweep approach. The first 
sweep is required to approximate the x-directional component of group velocity. 

The wave angle is calculated by 

1 = tan 
Kx 

where 

with 

ky/l ~ (Ky/k)2, Ky = VfS 

S   = 

V$S 

I Kxdx - k0x + Kyy = ta,n~1[lm(A')/Tle(A')] 

[Sj+i ~ Sjl/Ay   or   [Sj - Sj-i]/Ay 

The wave height is calculated by, 

H = 2Jlle{-A'}2 + lm{-A'Y 

4 Comparisons of wave models 

4.1 Basic equation 
The nature and the exactness of the basic equations in each model are evaluated in terms of 
dynamics (energy conservation) and kinematics (Eikonal equation). The comparisons are 
summarized in Table 3. For details see Lee and Wang (1992). 

Table 3 

Model Assumption Energy eq. Eikonal eq. Violating cond. 

HMI gr] S ia<t> approx. exact strong current 
HMII V{CCg) =* 0 exact approx. steep slope 
EMI - exact exact - 
EMU - exact exact - 
PM fcy = 0 approx. approx. wide angle 
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4.2 Computational difficulty 
The degree of computational difficulty is measured in terms of stability as well as CPU 
time. The stability criteria given below are obtained for ideal cases only. Therefore, they 
are not general as well as not vigorous. 

Table 4 

Model Stability 
HMI At < T/[(Lmax/Ax)2 + (L^/Ay)2}1'2 

HMII At < T/[(naLmax/Ax)2 + {naLmaxj Ay)2}1!2 

EMI Ay > Lmax/-K for central difference method 
EM II Ay > Lmax/ir for r = 0 
PM stable 
na = Cga/Ca (with subscript a indicating the absolute) 

The comparison for the computational time is also not general. Rather, a specific 
configuration as shown in Fig.l is used as the test bench mark. This configuration is a 
cicular shoal used by Ito and Tanimoto (1972) in their laboratory experiment to study 
combined diffraction and refraction. This configuration has been cited by many authors 
for verification purposes. Here, the same grids and same accuracy criteria are used in all 
models. Wave heights along three cross-sections as shown in Fig.2 are compared with the 
laboratory data of Ito arid Tanimoto. The CPU time on a VAX-8350 computer and the 
values of the agreement parameter are given below. 

Table 5 

Model CPU time rf(Sec.l) d(Sec.2) d(Sec.3) 
HMI 15   min 0.98 0.97 0.95 
HMII 12   min 0.97 0.97 0.96 
EMI 24    sec 0.96 0.97 0.94 
EM II 5   min 0.98 0.97 0.96 
PM 17    sec 0.97 0.97 0.95 

The agreement is based on an index, d, given here as an agreement parameter (Willmott, 
1981): 

d = 1 Ef(P, - Oi) 
Z»(\p,-o\ + \ot~o\)2 

where P; is the numerical value, 0; is the theoretical or observed value and 0 is the mean 
of the variates O;. The values for d vary between 0 and 1.0, with 1.0 indicating perfect 
agreement. 

4.3 Wave shoaling and refraction 
To test wave shoaling and refraction, numerical results were compared with the analytical 
solutions based on the energy conservation equation and Snell's law for waves propagating 
over a uniform slope. The input data are uniformly given to each model as follows: 
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^ 
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Figure 1: Shoal configuration for comparison of CPU time (concentric circular con- 
tours of hjLi). 

Figure 2: Comparison with the laboratory data of Ito and Tanimoto (1972). 
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0.2 0.3 0.4 0.5   0.1 0JE 0.3 0.1 0.2 0.3 

Figure 3: Comparison of wave shoaling and wave refraction. 

NX    NY    Ax(m)    Ay(rn)    T(sec) 
101     21 0.02 0.14 0.8 

The time step in the hyperbolic models is fixed at 0.01 sec. 

As shown in Figure 3, all models except hyperbolic model I produce results of good 
agreement. Hyperbolic model I, on the other hand, induces periodical fluctuations. The 
numerical error appears to be related to the ratio of grid size to wave length. As the 
wave length shortens towards shoreline the error becomes larger and also propagates up- 
wave as time progresses. The numerical results were taken along a center grid line in x- axis. 

4,4 Wave diffraction 
Wave diffraction was evaluated by comparing wave height with the analytical solution given 
by Wiegel (1962) for a semi-infinite breakwater. The input data are uniformly given as 
NX=91, NY=75, Az=0,04 m ( = 0.1 L), Ai/=0.08 m for 7=0.511 sec except elliptic model 
II where NY=38 and Ay=0.16 m were used to avoid numerical instability. The time step 
is 0.01 sec in the hyperbolic models. 

Figure 4 shows the comparisons for waves approaching normal to the breakwater axis. 
All models appear to agree well with the analytical result. For 30° angle to the normal, 
however, only hyperbolic model I and elliptic model II perform adequately (Fig.5). The 
performance in general can be improved by reducing Ay, except elliptic model II which is 
almost stable regardless the size of Ay. 
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Hyperbolic Model Elliptic Model  I 

-4-3-2-10     1      2     3     4 

Elliptic Model  II 
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:     I 
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Parabolic  Model 
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Figure 4: Comparison of wave diffraction for semi-infinite breakwater (0°) between 
analytic solutions (dotted line) and numerical solutions (solid contour line of 0.8, 0.6, 
0.4 and 0.2 diffraction coeff. from left). 

Hyperbolic  Model  I Elliptic  Model  I 

-4-3-2-10     1      2     3     4 

Elliptic Model  11 

• 

#: •; 

-4-3-2-10     1      2     3     4 

Parabolic  Model 

-4-3-2-101234 -4-3-2-101234 

yA y/L 

Figure 5: Comparison of wave diffraction for semi-infinite breakwater (30°). 
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— Theory {0  degree) 
Q Hyperbolic  Model  1 

— Theory (0 degree) 

Q Elliptic Model  I 

— Theory  (30 degree) 
© Hyperbolic Model 1 

— Theory (30 degree) 

© Elliptic Model ] 

2.0       2.5       3.0 0.5       1.0       1.5      2.0      2:5      3.0 

x/L x/L 

Figure 6: Wave reflection tests against wall. 

4.5 Wave reflection 
Wave reflection was tested for the case of waves approaching a seawall at 0° and 30° in 
constant deep water depth of 3 m, using the listed input conditions, 

input data NX NY Ax(m) Ay(m) At(sec) T(sec) 
HM 
EMI 

61 
61 

21 
21 

0.08 
0.08 

0.08 
0.50 

0.02 1.0 
1.0 

Owing to the finite grid size and time step a numerical error is also expected. Figure 
6 shows that the numerical results, on the whole, agree well with theory for both 0° and 
30° wave angles. The hyperbolic model tends to yield slightly larger error in wave height, 
whereas the elliptic model I produces slightly larger phase error. 

The wave reflection against the bottom slope was also compared with the 3-dimensional 
numerical solution represented by Booij (1983). Both models run in this study give reason- 
ably good agreement as shown in Fig.7. 

4.6 Wave-current interaction 
Wave-current interaction is compared for cases of colinear current and wave refraction due 
to the shearing current, both in constant deep water depth of 3 m. The analytic solution 
for the shearing current is given by Longuet-Higgins and Stewart (1961). The given wave 
conditions are //,=0.1 m at the upwave boundary and T=l sec. Waves are allowed to 
freely pass through the downwave boundaries. The input data are uniform with NX=101, 
NY=21, Az=0.1 m Ay=0.6 m for the elliptic models and Ay=0.l m for the rest. At, 
whenever applicable, is taken as 0.01 sec. 

The comparisons with analytical solutions are given in Fig.8. For the colinear case, all 
except hyperbolic model I performed adequately. For non-colinear case, hyperbolic model II 
and elliptic model II yield good results; the rest all produce varying degrees of inconsistency. 
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Figure 7: Wave reflection tests against bottom slope. 

COLINEAR REFRACTION  (height) REFRACTION  (angle) 

Figure 8: Wave-current interaction comparison. 
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4.7 Summary 
Each model was evaluated or run on a number of bench mark cases. The final evaluations 
with assigned rankings are given in the following matrix: 

Table 6 

Case HMI HMII EM I EMU PM 
Governing equation M 0 0 0 M 
Programming ease 0 M 0 M 0 
Numerical stability M X X X 0 
Computational time X X 0 M 0 
Shoaling 0 0 0 0 0 
Refraction M 0 M 0 M 
Diffraction (normal) 0 0 0 0 0 
Diffraction (oblique) 0 0 X 0 M 
Reflection (vertical) 0 - 0 - - 
Reflection (slope) 0 - 0 - - 
Current (colinear) M 0 0 0 0 
Current (refraction) X 0 M 0 X 

0: good      M: marginal      X: bad       -: not applicable 

5 Conclusions 
Five numerical wave-current interaction models were evaluated in a two-dimensional domain 
through mutual comparisons. The evaluation is limited in that the bench mark cases are 
restricted to those with either theoretical solution or accepted hydraulic model results. 
Within this context, the performance of each model is evaluated, and the comparisons are 
given in a matrix form. At this moment, there appears to be no single model that clearly 
outperforms the others. The selection of a model for application depends upon the intended 
purpose. Therefore, the present paper should serve as a useful guilde line for model selection. 
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