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Abstract 

Time dependent forms of the mild-slope wave equation are apphed to the propagation 
of regular and irregular wave trains over variable bathymetry. The model equation of 
Smith and Sprinks is found to be a robust predictor of irregular waves, if the frequency 
spread for a single component calculation is not made too large. The model is extended 
to include forced, low-frequency components, and some preliminary results for bound 
and free long wave computation are shown. 

Introduction 

Based on the work of Smith and Sprinks (1975), the mild-slope wave equation for linear 
waves with a dominant carrier frequency w and small frequency spread may be written 
as 

4>u - Vh • (CCgVh4>) + (u2 - k2CCa)4> = 0 (1) 

where <j> is the value of the velocity potential at the mean surface z = 0. This equa- 
tion reduces to Berkhoff's (1972) elliptic equation when the time dependence of purely 
periodic waves is extracted. 

In the past, many solutions of the elliptic problem for open coastal zones have been 
obtained using a parabolic approximation, which treats the forward-propagating portion 
of the wave field only. This step has often been taken because of its computational 
efficiency. The applicability of parabolic approximations is limited, however, to regions 
without complicated structural boundaries. In particular, complex entrance channels 
and interiors of harbors are not good candidates for this modelling technique, since the 
wave field is built up by a number of reflections and re-reflections of waves within the 
enclosed domains. For these applications, full solutions to the complete boundary-value 
problem must be found. Progress in obtaining efficient solutions using sophisticated 
pre-conditioning schemes has been made by Panchang et al (1991). 

As an alternative to the elliptic equation approach, several authors (Ito and Tan- 
imoto, 1972; Copeland, 1985; Madsen and Larsen, 1987) have obtained solutions to 
time-dependent, three-equation models using time-stepping techniques based on equa- 
tions which are first-order in time. These models are essentially numerical analogs to 
the more familiar shallow water equations.   The model solutions are computed until 

Center for Applied Coastal Research, Department of Civil Engineering,  University of Delaware, 
Newark, DE 19716 

2New York District, U.S. Army Corps of Engineers, New York, NY 

391 



392 COASTAL ENGINEERING 1992 

the amplitude envelopes reach a steady state. The final solutions are only valid for 
purely periodic wave trains, since the three-equation models used are, for the most 
part, equivalent to the second order model 

C_ 
Vh • (CCgVh4>) = 0. (2) 

This model differs from the correct form (1), and is non-dispersive in the sense that 
modulations of the carrier wave train propagate at the wave phase speed, rather than 
at the group velocity, as would be required in a correct time-dependent model. 

Since the application of time-stepping solutions to the mild-slope equation is a rea- 
sonably efficient fine of approach, and since it is desirable to provide a model which is 
valid for unsteady wave trains, it would be advantageous to use a set of model equa- 
tions which preserves the proper wave group behavior for non-periodic, narrow-banded 
wave trains. Such a model would be useful in computing effects such as second-order 
oscillations forced by wave groups. 

In section 2, we derive the time-dependent mild-slope equations. In section 3, the 
dispersiveness of the resulting model is verified by studying wave group propagation 
over a flat bottom. In section 4 we consider the propagation of linear and weakly 
nonlinear waves over an elliptic shoal. Section 5 considers two-dimensional propagation 
of waves over an elliptic shoal using monochromatic and random waves. Finally, in 
section 6, we discuss the forcing of long wave components at difference frequencies due 
to non-resonant wave-wave interactions. 

Derivation of the time-dependent model equations 

The model equations are derived here using Hamilton's variational principle. The La- 
grangian for irrotational motion is given by 

L = -P f_{4>t + \{^h4>? + \{4>z? + gz)dz (3) 

The z dependence is extracted from <j>(x,y,z,t) according to 

4>(x,y,z,t) = 4>(x,y,t)f(z) (4) 

where 

From the variational principle the change of the integral of the Lagrangian, L, over all 
time and space must be equal to zero: 

S /  /   / L(x,y,t,<f>,Vh<t>,(f>ur))dxdydt=0 (6) 
Jt Jy Jx 

Substituting (3) into (6) and retaining the terms to the second order in (j) and r\ gives 

- PL = nit + \m2 + —^iy^f + Hu2-k*cc°\4>)* (7) 

Varying the Lagrangian L with respect to 0 and i] gives 

Vt   =   -vfe- —g-vh4>) + - aJ-4> (8) 
9 9 

4>t   =   -gv (9) 
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which are the time-dependent mild-slope equations. The surface displacement may be 
eliminated from (8) and (9) in order to obtain the model equation (1). In this study, 
we have employed a number of numerical methods fairly interchangeably, including a 
second-order, centered-time centered-space finite difference approximation for (1), and 
a fourth-order accurate Adams-Bashforth-Moulton method for (8) and (9). (Use of this 
latter method was motivated by a parallel effort for the Boussinesq equations, which 
will be reported separately.) 

As in Madsen and Larsen (1987), it is convenient to remove the fast time behavior 
from the dependent variables by means of the transformation 

r,,^=(fi,4>)e^t (10) 

where u> is the frequency used to evaluate the model coefficients. The resulting model 
equations are 

m  =  iun-vh-(^v^)+{-^~^4> (ii) 

4>t    =    iu<j>-gf} (12) 

instead of (8) and (9), and 

fot - 2tw& - Vh • (CCgVhj>) - k2CCg4> = 0 (13) 

instead of (1). The same set of numerical schemes are also used for the revised model. 

Wave group propagation 

The basic ability of the model to propagate dispersive linear waves is tested by exam- 
ining wave group propagation over constant depth. Two numerical experiments were 
performed. An initial wavelength of 10m was specified, with shallow and deep water 
depths of 0.25m and 9m, respectively. The initial conditions are r/ and <j> = 0. A 
narrow-banded groupy wavetrain is generated at the boundary according to 

<j>x = u0sin(u;f)sin(—-t); t>0 (14) 

The results shown in figure 1 are water surface elevations plotted at a sequence of 
twenty time levels spaced one wave period apart. These results were obtained using the 
Euler Predictor-Corrector method with second-order accurate finite differences (Kirby 
and Rasmussen, 1991). Two lines are shown on each graph; one following the maximum 
amplitude of a specific wave group, and the other following a zero crossing of a specific 
wave. Visually, it appears that in shallow water Ca « C, and in deep water Cg ~ C/2, 
which shows the validity of the models to predict wave group velocity. Examination of 
the wave records and computed envelopes using cross-correlation techniques shows that 
the phase and group velocities are accurately predicted to within 1% for the differencing 
resolutions used here. 

Berkhoff, Booij and Radder shoal experiment 

As an example of the application of the models in two-dimensions, we study the focussing 
of waves by a shoal, using the geometry and experimental parameters given in Berkhoff 
et al.  (1982). It is known from parabolic model computations (Kirby and Dalrymple, 
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deep water 
ft. 

-shallow water 

Figurp 1: Propagation of wave groups in deep and shallow water. 

1984) that the waves in this example are significantly affected by wave nonlinearity. 
Following the appendix in Kirby and Dalrymple (1984), we provide a heuristic extension 
to the mild-slope equation that is appropriate only for progressive Stokes waves. The 
resulting modification to (8) is given by 

CC 
Vt = -Vft • ( 3-Vh4 i + 

{w2-k2ccg + ojCgK'\n\2 

where 

K': 
k3C cosh 4kh + 8 - 2 tanh2 kh 

Cg 8 sinh4 kh 

(15) 

(16) 

We apply both the linear and nonlinear model equations to the shoal described by 
Berkhoff et al. (1982). The data on wave amplitude was obtained over the entire 
vicinity of a refractive focus. The Ursell parameter remains of a reasonably small size 
over the entire domain of interest, thus indicating that Stokes theory should, be a valid 
representation of the experiment. 

In the model test, normally incident waves are generated at a period of 1.0s at the 
deep end of the wave tank, and are dissipated by a breaking process on a gravel beach 
at the shallow end. At sections 1 through 8 (see Berkhoff et al) there are arrays of 
resistance type wave gages spaced 0.5m apart which record time series of water surface 
elevations. 

In order to dissipate wave energy at down wave boundaries, we presently use a wave 
damping layer at the downwave boundary. Equation (9) is modified to 

where 

4>t = ~9V • 

0, % _; *£sponge 

(17) 

(18) 
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p     — X ~ XsP°n9e Qg\ 
•"max       '"sponge 

and the sponge length xsponge is specified as 2.5 times the initial wave length. 
Following a method of line approach, the model equations (8) and (17) (linear), or 

(15) and (17) (nonlinear) are solved using the A-B-M predictor-corrector method. The 
grid sizes are Ax = Ay = 0.25m and At = l/40s. Input wave period is Is. We run the 
models until t = 80s and compute average wave heights between t — 70s and t = 80s, 
after the waves reach steady state. 

Referring to figure 2, where model results are compared to measured data along 
transects 1 through 8, we see that the linear model tends to overpredict maximum am- 
plitudes in the vicinity of focused waves, where wave steepness may become large and 
nonlinear effects become important. In these regions the nonlinear models give better 
results. The nonlinear model results appear to contain some spurious amplitude modu- 
lations. These are not a manifestation of instability, and the effect may be suppressed 
by a suitable lagging of the nonlinear term in the numerical scheme. 

Vincent and Briggs shoal experiment 

A further study of monochromatic and random wave propagation over a shoal has been 
performed by Vincent and Briggs (1989). These tests are used here as a validation of 
the present numerical scheme as a model for irregular wave propagation. 

For a random wave train, the water surface elevation may be written as 

L   M 

r](x, y,t) = Y!Yl A'm cos{fc'cos 8mx + ki sin 9my - 2K fit + V>;m} (20) 
(=1 m=l 

where A\m is wave amplitude; /( is wave frequency; 6m is wave direction; and ipjm is 
random phase independent of frequency and direction. Instead of using a discrete set of 
wave angles, we use here a discretization of the longshore wavenumber spectrum. The 
longshore wavenumber Am is defined as 

Am = kis'm8m (21) 

which determines the wave direction 6m at each frequency. At the upwave boundary 
(x = 0), the water surface elevation is given by 

L    M 

v(y,t) = Yl J2 A<• cos{xm,y - ^fl* + i'lm} (22) 
(=1 m=l 

For given frequency /; and longshore wavenumber Am, we get the amplitude of the water 
surface elevation 

Aim = ^2S,(f)Af^^AX (23) 

where Si(f) is the spectral density dependent on the frequency / and 5m(A) is the 
directional spreading function dependent on the longshore wavenumber A. We can get 
SmW from Dm{9) (which is the spreading function dependent on the direction 6) by 
the condition 

r D{6)d6 = j   ^-dX = 1, (24) 
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normalized wave height (BBR secttonS) 

normalized wave height (BBR sectkm7) 

Figure 2: Comparison among linear model (dashed Lines), nonlinear model (solid lines), 
and experimental data of Berkhoff et al. (1982) 
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and so, 

m-Dm•-WL (25) 
The z-component of fluid velocity at x,z = 0 can be obtained from the velocity 

potential and is given by 

L   M 

^ = J212 B'm cosiX•y ~ 27r/'* + V'im} (26) 
(=1 ro=l 

where the amplitude B\m is given by 

B,m = AIm
yy  ' (27) 

When the spectral density S(f) and the directional spreading function D(9) are 
given, we can get the amplitude of the wave velocity Bim. Using a 2-dimensional 
inverse FFT from the frequency and longshore wavenumber domain to time and y space 
domain, we can generate the velocity <j>x. 

Since the model equation (1) is not valid for an arbitrarily large range of frequencies, 
we proceed by separating the whole spectrum into several bands. In each frequency 
band, we then construct a wavemaker or offshore boundary condition using the spectral 
information falling within that band. The time-dependent mild slope equation is then 
solved for the narrow-banded irregular sea lying within each frequency band. The final 
solution is obtained by adding the different bands. 

Following Vincent and Briggs (1989), we use the TMA spectrum as the target fre- 
quency spectrum and a wrapped normal function as the directional spreading function. 
The TMA spectrum is given by 

S(f) = aff2(27r)-4r5 exp{-1.25(^)4 + (In7) exp[- U~Jjfwf, h) (28) 

S(f) depends on the parameters a (Phillip's constant), fp (peak frequency) 7 (peak 
enhancement factor) and a (shape parameter). The factor <j>(f,h) incorporates the 
effect of the depth h and may be approximated by 

f 0.5w£, uh < 1 
<!>= I   1- 0.5(2 -ujhf,   l<uh<2 (29) 

[  1, toh>2 

where Uh = 27r/(/i/g)1'2. The parameter 7 is assigned values of 2 (broad frequency) 
and 20 (narrow frequency). For the cases studied here, 7 was assigned a value of 20. 
The directional spreading function D{8) is obtained by assigning the values of either 
10° (narrow spreading) or 30° (broad spreading) to the spreading parameter (To: 

D(e)=~ + ^J2eM-{j^}^sn(6-e0) (30) 
71 — 1 

where 80 = mean wave direction ( = 0°) and N = number of terms in the series (= 20). 
Vincent and Briggs (1989)present a number of cases with a combination of monochro- 

matic, narrow-banded or broad-banded frequency spectra and unidirectional, narrow- 
banded or broad-banded directional spreads.   Here, we show results for three typical 
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cases: a monochromatic unidirectional sea (M2), a sea with narrow frequency and nar- 
row directional spreading (N4), and a sea with narrow frequency and broad directional 
spreading (B4). All three cases involve non-breaking waves. Wave period (M2) and 
peak period (N4, B4) are 1.30*. Wave height (M2) and rms wave height (N4, B4) are 
2.54cm. Phillip's a is taken to be 0.00047. 

We separate the whole frequency spectrum into five components with equal band 
widths. The five components of the frequency spectra cover 95 percent of the total 
spectral density, and, using the grid spacings chosen below, the ratio of minimum wave- 
length to spatial grid size is 4.54. We use a weighted average of the frequencies in each 
frequency band to determine the representative frequency used to compute the model 
coefficients for each band. The band width is 0.267 Hz (see figure 3). The grid size 
is A a; = Ay — 0.1905m and time step is At = 1.3/805. We compute until t = 260s. 
Variances of water surface elevation, mo are computed between t = 65s and i = 260s 
and, by the assumption of the Rayleigh distribution of the wave height, significant wave 
heights are computed according to 

H, = AJWTo (31) 

In figures 4-6, the water surface elevations in the whole spatial domain at t = 260s 
are shown for cases M2, N4, and B4. The figure for Case M2 shows that the waves are 
long-crested and symmetric along the line crossing the center of the shoal parrallel to 
x axis. After the waves pass the shoal they become short-crested because of refractive 
focusing. When we compare the cases with directional spreading (N4 and B4) we clearly 
see that the wave field with broad directional spreading (B4) is more short-crested than 
the wave field with narrow directional spreading (N4). 

In figure 7, the computed normalized wave heights along the section 4 are compared 
with measured data for cases M2, N4, and B4. For case M2, the normalized wave height 
near the centerline is greater than 2, which shows the considerable effects of refractive 
focusing over the shoal. For case N4, the computed results show underestimation near 
the centerline and overestimation away from the centerline. For case B4, the computed 
results show overestimation all along the section. The model results and data indicate 
that increasing directional spreading leads to much less spatial wave height variation 
induced by localized topographic irregularities. This result is seen in all spectral wave 
studies, and is a manifestation of the fact that the local minimums and maximums 
in the diffraction pattern for each spectral component overlap and experience mostly 
destructive interference. 

Roughly, all three cases show that the model yields reasonably accurate results 
compared with the measured data. It is found that for directionally broad spreading 
case (B4) the refractive focussing effects are not noticeable behind the shoal. 

Forced long waves 

The forcing of long waves at difference frequencies is of particular interest in coastal 
design due to the influence of long waves in low frequency harbor seiching and forces 
on moored ships. Kirby (1983) extended the linear mild-slope equation to include 
forced low-frequency components, using the Stokes expansion to second order in the 
Lagrangian. The model for the additional low-frequency components is given by forced 
long wave equations, which for variable depth are given by 



400 COASTAL ENGINEERING 1992 

TMA frequency spectnim (narrow banded) 
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Figure 3: TMA frequency spectra (narrow frequency band) and directional spreading 
functions (solid lines : a0 = 10°, dashed lines : ao = 30°) 
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Figure 4: Water surface elevations at t = 260 seconds (case M2) 

Figure 5: Water surface elevations at t = 260 seconds (case N4) 
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Figure 6: Water surface elevations at t = 260 seconds (case B4) 
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Figure 7: Measured and predicted normalized wave heights on section 4 
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V2,t + Vfc • {hVh<f>2}   =    -Vh-{VVh<j>} (32) 

<h,t + 9t2   =   ^^-\(vhj>)2-^T2 (33) 

where ( ) denotes a time average. The correct method for computing time averages in 
an unsteady wave train is unclear. If the wave train is narrow-banded, we may use the 
extraction of the dominant frequency in section 2 as the basis for isolating the slowly- 
varying amplitudes. Following this strategy, (32) and (33) may be further reduced to 

V2,t + Vh • {hVh<j>2}   =    -ifte (vfc • WVh4>}) (34) 
2-i 4 

<h,t + gV2    =    yW* - j (yh4> • V^*) - ~#* (35) 

These equations may also be written as a single second-order equation, analogous to 
(13), after elimination of rji. The numerical schemes are again identical to those used 
for the basic linear equations. 

Figure 8 shows a plot illustrating the generation of a single wave group and the 
associated bound and free long waves in a one-dimensional wave flume. The wavemaker 
motion used does not compensate for the decrease in total volume (at second order) 
associated with the entrance of the wave group into the wave channel. There is thus a 
free long wave generated whose net positive volume compensates for the negative volume 
associated with the setdown under the wave group. This positive wave propagates away 
from the wavemaker as a free wave, and thus leads the short wave group in the tank. 

Additional results for long wave generation and harbor resonance in 2-D will be 
reported separately. 

Conclusions 

We have developed models for the numerical solution of time-dependent mild-slope 
equations, and applied the models to the study of irregular and regular wave propagation 
in the coastal environment. Linear and nonlinear versions of the mode were applied to 
Berkhoff shoal, and, as expected, we found that the nonlinear model showed better 
results than the linear model. We also applied the linear version of the model to study 
irregular wave refraction and diffraction by a submerged shoal, and compared model 
results to experimental data given by Vincent and Briggs (1989). Finally, the models 
were extended to include additional low frequency components which are forced by the 
primary wave envelopes, and some preliminary results on long wave generation were 
shown. 

References 

Berkhoff, J. C. W., 1972, "Computation of combined refraction-diffraction", Proc. 13th 
Intl. Conf, Coast. Engineering, Vancouver, 471-490. 

Berkhoff, J. C. W., Booij, N., and Radder, A. C, 1982, "Verification of numerical 
wave propagation models for simple harmonic linear waves", Coastal Engineering, 
6, 255-279. 

Copeland, G. J. M., 1985, "A practical alternative to the 'mild-slope' wave equation", 
Coastal Engineering, 9, 125-149. 



404 COASTAL ENGINEERING 1992 

generation of group and free long wave at left boundary 

2.5 

•§.      1-5 

0.5 _Wg^^- 

0   50   100  150  200  250  300  350  400  450  500 

x(m) 

Figure 8: Generation of bound and free long waves during wave group generation. 

Ito, Y. and Tanimoto, K., 1972, "A method of numerical analysis of wave propagation 
- application to wave diffraction and refraction", Proc. 13th Intl. Con}. Coast. 
Engineering, Vancouver, Chapt. 26. 

Kirby, J. T., 1983, "Propagation of weakly-nonlinear surface water waves in regions 
with varying depth and current", Ph.D. thesis, University of Delaware. 

Kirby, J. T. and Dalrymple, R. A., 1984, "Verification of a parabolic equation for 
propagation of weakly-nonlinear waves", Coastal Engineering, 8, 219-232. 

Kirby, J. T. and Rasmussen, C, 1991, "Numerical solutions for transient and nearly 
periodic waves in shallow water", Proc. ASCE Engineering Mechanics Specialty 
Conference: Mechanics Computing in the 1990's and Beyond, Columbus, 328-332, 
May. 

Madsen, P. A. and Larsen, J., 1987, "An efficient finite-difference approach to the 
mild-slope equation", Coastal Engineering, 11, 329-351. 

Panchang, V. G., Pearce, B. R., Wei, G. and Cushman-Roisin, B., 1991, "Solution of 
the mild-slope wave problem by iteration", Applied Ocean Res., 13, 187-199. 

Smith, R. and Sprinks, T., 1975, "Scattering of surface waves by a conical island", J. 
Fluid Mech., 72, 373-384. 

Vincent, C. L. and Briggs, M. J., 1989, "Refraction and diffraction of irregular waves 
over a mound", J. of Waterway, Port, Coastal, and Ocean Engineering, 115, 269- 
284. 




