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Abstract 

Two different aspects of nearshore wave modelling are discussed. The first section 
details a model valid in deeper water than the usual shallow water wave models. We 
derive a mild-slope equation in which nonlinearity is retained to second order in e and 
dispersion is retained to all orders. The resulting parabolic model is then simplified for 
expedient calculation. This simplified model is compared to the data of Whalin (1971) 
with favorable results. The second section concerns the role of vector-sum interactions as 
compared to colinear, near-resonant interactions. We use the angular spectrum model 
of Kirby (1990) to determine which sort of interaction is dominant in the nearshore 
wavefield. A steady wave solution of the model and a case of unsteady wave evolution 
were investigated. Two simplified data sets with different amounts of directional spread 
were then run through the model. All three tests indicate that vector-sum interactions 
contribute significantly to wave field evolution. 

Introduction 

A number of frequency-domain models of nearshore wave evolution have appeared in 
the literature. Many of these models are based on the Boussinesq equations of Peregrine 
(1967) or closely-related variants; examples include Freilich and Guza (1984) and Liu, 
et.al. (1985). All these models calculate the wavefield in the frequency domain by factor- 
ing out the time periodicity of each frequency component, and treat the nonlinear terms 
in the governing equations by three-wave resonant interaction theory, making explicit 
the energy exchange between frequencies. Directional characteristics of the wavefield, 
if considered at all, are usually treated by the parabolic approximation (see Liu, et.al. 
(1985) for an example of this). 

This paper is divided into two parts. The first part contains the development of a finite- 
depth spectral evolution model which can be used in deeper water than the Boussinesq- 
type models. A slightly simplified version of this model is compared to data, and the 
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effect of the simplification discussed. The second part of the paper details an investiga- 
tion of directional spectral interaction. Specifically, we use the angular spectrum model 
of Kirby (1990) to determine whether detuned vector-sum interactions are as important 
in the wavefield as resonant (or near-resonant) colinear interactions. 

Finite Depth Evolution Model 
Spectral models based on the Boussinesq equations (Peregrine (1967)) have existed for 
some time (Frielich and Guza (1984); Liu, et.al. (1985)). They work well within their 
range of validity (kh « 1, where k is the wavenumber and h the water depth). How- 
ever, the shoaling mechanism for these models in their lowest-order variants is Green's 
Law: 

which overpredicts the shoaling of higher-frequency spectral components. Some dis- 
persiveness has been added to the shoaling terms of Boussinesq-type models (e.g., the 
"dispersive shoaling model" of Freilich and Guza (1984); Madsen, et.al. (1992)). This 
added dispersiveness is of at most 0(kh)2, and is thus only a small correction to the 
shoaling term. 

Theoretical Formulation 

In this paper we seek a model which is valid for all orders of kh, and retain terms to 
0(f)2, where « is the ratio of wave amplitude to water depth. The derivation follows 
the method of Bryant (1973, 1974). A similar model, but truncated to two components, 
was detailed by Keller (1988). 

We begin from the boundary value problem: 

Governing equation (-h < z < 0): 

V24> = 0 (2) 

Combined free surface boundary condition (to 0(c2)) at z = 0: 

<t>, = ~~g (ftt + liWt + \(4>*)1 - ^(fc& + V, • (6Vkfl) (3) 

Bottom boundary condition at z = —h: 

4>z = -vA/i • vh<p (4) 

We then assume the solution for 4> in terms of a superposition of components: 

<t>= YlMk^h^z)Mx,V,kn,u>n,t) (5) 
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where the /„ are the depth dependencies for each mode: 

/      =    COSh ^ (h +  Z) /g) 
coshknh 

and the fcn are found using the linear dispersion relation: 

wn = 9^n tanh knh (7) 

Following the method of Smith and Sprinks (1975), we obtain the following mild-slope 
equation modified by nonlinearity: 

ht - v* • ((cc,)„vk&) + «* (i - |p) k = 

?[EE 2W » 
2        \ritrmt;i 2 

"I T",,,;   ;     ..       "i^m 
(4>l,4>m,)t -T*-{4>l4>m)t 

(8) 

where the /, m and n are related according to three-wave interaction conditions. Intro- 
ducing time periodicity and slow z-variation in amplitude: 

1 = ZllA ei(fkn<l*-«<*t) + J£_A*  -Hfk„dx-m>t) ,9x 
2u>n 2u>„ 

yields an elliptic equation for the evolution of the complex amplitude An.  Using the 
parabolic approximation: 

((CC,M„),    «   2i(kCCg)nAn%I (10) 

and making use of a reference phase function (Kirby and Dalrymple (1983)) to redress 
the lack of phase dependence on y, 

An = anelfkno{*)**-fkn(z)dx) (U) 

where kn<>(x) is a y-averaged wavenumber, gives us: 

2i(kCCg)nanx - 2(kCCg)n(kno - kn)an + i(kCCg)nxan + ((CCg)n(an)y)y = 

2 ^ iZK,w„+,,o;,,fc,,fcn+;)aran+,e
,'(/l»+'.^)-*'«W-*»°(-)^)      (12) 

'=1 K 
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where: 

#(<*>«> Wn+J,W|,&|, *n+<) = 

9      (w2fyfcn+( + (kn+, - ki)(ujn+,k, + w,fcn+;)wnJ 
W;«n+/ 

^ (w,2 - w,wn+, + w2
+;) (13) 

and all wavenumbers are calculated from full linear theory. Preliminary testing of (12) 
has demonstrated that the interaction coefficients R require a large amount of computer 
time to calculate. Thus we simplified the model somewhat by taking the coefficients 
to the shallow-water limit (Ukai, et.al. (1990); Abreau, et.al. (1992); Mase and Kirby 
(1992)), and using the shallow water wavenumber as the reference phase function in 
(11). Thus we obtain: 

2i(kCCg)nanx - 2(kCCg)n(k'n<> - kn)an + i(kCCg)nxan + 

((CCg)n(an)y)v = iSJUh.    £ a,an_( + 2 £ ajan+l (14) 
\(=i J=i /„ 

where K = ^. 

Comparison to Data 

To see whether this simplification causes any loss of accuracy, one-dimensional versions 
of (12) and (14) were compared to flume data from Mase and Kirby (1992); the reader 
is referred to their paper for details on the experiment. Experimental results for Case 
1 are compared to the two one-dimensional models at a depth h = 15cm (Figure 1), 
and it is apparent that, save for some slight deviation at the tail of the spectrum, both 
models compare equally well to the data. However, (14) required roughly 12 percent of 
the computing time of (12). This indicates that retaining full dispersion in the shoaling 
terms is the dominant improvement of these models over the Boussinesq equations, and 
that little is lost in simplifying the nonlinear coefficients as we have done here. The 
one-dimensional version of (14) is equivalent to that of Mase and Kirby (1992), except 
for a different dispersion term. Kaihatu and Kirby (1991) have shown that (12) fits 
experimental shoaling data better than the "consistent model" of Freilich and Guza 
(1984), particularly in the higher frequency ranges. 

We use the data of Whalin (1971) to verify the two-dimensional model equation (14). 
This particular data set has been used on numerous occasions to evaluate numerical 
models (e.g. Liu, et.al. (1985); Rygg (1988); Madsen, et.al, (1992)). The experiment 
consisted of a long channel with bathymetry resembling a cylinder tilted along its longi- 
tudinal axis; the experimental layout is shown in Figure 2. Sinusoidal waves of one, two 
and three second periods were generated at three different amplitudes for each period; 
higher harmonics were allowed to grow from zero amplitude. The amplitudes of the first 
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Figure 1: Comparison of Case 1 shoaling data of Mase and Kirby to equations (12) and 
(14) at h = 15cm. Data is solid line, equation (12) is dashed line and equation (14) is 
dotted line. 
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Figure 2: Topography of Whalin's (1971) experiment. From Liu, et.al. (1985) 
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three Fourier components were recorded along the centerline of the channel. 

In this study we used the 3 second case for model-data comparison. This was done to 
facilitate a fair comparison between (14) and the Kadomstev-Petviashivili (KP) model 
of Liu, et.al. (1985). The KP model is essentially a lowest-order parabolic Boussinesq 
model, with a non-dispersive shoaling term and frequency dispersion retained up to 
O(kh)2. Figures 3(a,b,c) show the Fourier amplitudes of the models compared to data 
along the centerline of the tank. For the most part the present model performs better 
than the KP model, especially in reproducing the higher harmonics. This is possibly 
due to the improved dispersion characteristic of the present model, where each mode is 
shoaled using full linear theory. 

Discussion 

To conclude this section, it appears that the simplified fully-dispersive model (14) per- 
forms well in both combined refraction-diffraction and in pure shoaling. One drawback 
of the model is the lowest-order parabolic formulation. This not only restricts the model 
to small angle of incidence, also gives equal weight to all interactions no matter the di- 
rection of approach. This can be remedied by using the angular spectrum approach 
(Kirby (1990)), as explained in greater detail in the next section. 

Directional Spectra 
This section of the paper discusses the role of directional spectral interaction in an 
evolving wave field. Specifically, we wish to address two recently-published viewpoints 
concerning whether detuned, vector-sum interactions play as large a role in the evolu- 
tion of nearshore waves as near-resonant, colinear interactions. Vector-sum interactions 
place the energy exchanged between two spectral components approaching at different 
directions at the sum frequency and the vector-sum-wavenumber direction, while the co- 
linear interactions only take place between components travelling in the same direction. 
This sort of interaction is seemingly stronger, since the two interacting components are 
very nearly in resonance. However, Freilich, Guza and Elgar (1990, hereafter referred 
to as FGE) maintain that vector-sum interactions may be as important as colinear in- 
teractions, especially when the interactions come from very energetic spectral peaks 
approaching at different directions. They used field data taken at Torrey Pines Beach, 
California, where directional arrays were placed at 10m and Am water depth. Figure 4 
is taken from their paper, and shows a contoured frequency-direction plot of waves at 
the Am depth. Freilich, et.al. contended that the spectral peak located at (O.O6//2, —A" 
from beach normal, marked "A"), interacted with the peak at (O.lOffz, +10° from beach 
normal, marked "B"), to produce a peak at 0.16-02 approaching at a direction that was 
within one degree of the vector-sum wavenumber direction (marked "C"). 

In direct opposition to this, Abreau, et.al. (1992) argue that only resonant colinear 
interactions are important. They formulated a collision integral to obtain a wave Boltz- 
mann equation where only colinear interactions were allowed. They compared their 
results to the data of Freilich, et. al. (1990), and demonstrated qualitatively good 
agreement. Abreau, et.al. stated that the peak at / = 0.16Hz in the field data was 
not due to noncolinear interaction between highly energetic peaks as stated by FGE, 
but rather to near-resonant, colinear interactions between significantly less energetic 
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Figure 3: Comparison of equation (14) and KP model of Liu, et. al. (1985) to data 
of Whalin (1971) along centerline of tank. Solid line is equation (14), dashed line is 
KP model, and discrete points are data: dots are first harmonic Fourier amplitudes, 
squares are second harmonic amplitudes and triangles are third harmonic amplitudes. 
(a): a0 — 0.68cm, (b): a0 — 0.98cm, and (c): a0 = 1,46cm 
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Figure 4:   Data of Freilich, et.al.   (1990) at 4m water depth, plotted as contours of 
S(f,6). From Freilich, et.al. (1990). 

components of the two directional spectra. They stated that this interaction occurred 
because of the directional overlap between the two spectra in deep water. 

Angular Spectrum Boussinesq Model 

We wish to ascertain whether the vector-sum interactions are as important as the colin- 
ear interactions in wavefield evolution. The Boussinesq equation is used to serve as the 
diagnostic tool. We have three options concerning the form of the Boussinesq model 
used: a time-dependent model, a parabolic model and an angular spectrum model. The 
time-dependent formulation (e.g., Wu and Wu (1982)) treats both the resonant and 
non-resonant interactions in a non-explicit manner, making it difficult to discern be- 
tween them. Parabolic models (e.g., Liu, et.al. (1985)) are not helpful in this situation 
since they treat nonlinear interactions with equal weight regardless of direction. Thus 
we use the angular spectrum model of Kirby (1990). 

The angular spectrum approach consists of decomposing the governing equation into 
1M + 1 components of the longshore wavenumber A (= k sin 6) as well as N components 
of the frequency w. Thus the free surface elevation, for instance, can be written as: 

N      M 

n—1 m=—A/ 

iv        m 

iln{x,y,t)=Y,   £   A^(x)^nfk^dx+mXoy-n^ + c.c. 

where 

7nm = (l-(^)2(^)2)]/2 

(15) 

(16) 

In contrast to the parabolic approach, where N coupled partial differential equations 
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Figure 5: Steady-wave solution of angular spectrum Boussinesq model. Solid lines are 
amplitudes of vector-sum components, dashed lines are amplitudes of colinear second 
harmonics. 

were solved, the angular spectrum approach computes TV x(2Af + l) ordinary differential 
equations. Further details of the derivation of the angular spectrum Boussinesq model 
can be found in Kirby (1990), along with the governing equations. 

We have used the model in two preliminary investigations to determine the relative 
strength of the vector-sum interaction. For the case of a steady wave field, we gener- 
ated permanent form solutions using five amplitudes: two primary harmonics of equal 
amplitude separated by an angle 28, two second harmonics travelling in the same direc- 
tion as their respective primary harmonics, and one component at the sum frequency 
and moving at the vector-sum direction. Figure 5 shows a comparison of vector-sum 
amplitudes to those of the in-line second harmonic for permanent-form solutions and 
for several values of 0 and e. It is apparent that the vector-sum harmonic amplitude 
is larger than that of the in-line second harmonic for 9 up to 25°. This corresponds 
to a separation angle of 50° between primary components, much larger than the 14° 
separation between the spectral peaks in the field data of FGE. We also used the model 
to investigate unsteady wave evolution. We created an initial condition for the model 
using the same five components as the steady wave example, but the higher harmonics 
were given zero amplitude. This condition was then run through the model. Figure 
6 shows a comparison of the primary amplitude to the vector-sum harmonic and the 
in-line second harmonic amplitudes. We see that the vector-sum amplitude dominates 
the in-line second harmonic for much of the domain. We also see evidence of recurrence, 
whereby the system evolves back into its original state. Recurrence has been shown to 
be unstable to broad-banded noise (Elgar, et.al. (1990)), so results of this analysis is 
only moderately applicable to events in the ocean. However, these two investigations 
do show that vector-sum interactions make non-negligible contributions to wave field 
evolution. 
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a 

Figure 6: Recurrence test of angular spectrum Boussinesq model for e = 0.1, (kh) = 
0.36, 6 - 10°. Solid line is amplitude of primary harmonic, short dashed line is am- 
plitude of vector-sum component, and long-dashed line is amplitude of colinear second 
harmonic. 

Results 

We at first considered using the model directly on the field data, after the appropriate 
re-mapping into (/, A) space. We encountered some difficulty in doing so, primarily due 
to the random-phase assignments to the components of the field data. This attempt is 
continuing; however, its successful completion would not demonstrate how vector-sum 
interactions contribute to wave field evolution. This is because the two directional spec- 
tra of FGE overlap in direction, making it difficult to determine whether energy at the 
sum frequency originated from vector-sum interaction at the two peaks or from colinear 
interaction by directionally overlapped components. 

We then decided to create an artificial wave field, one which would demonstrate the 
importance of vector-sum interactions for both non-overlapping and overlapping spec- 
tra but with fewer components. Two cases, both with the same total variance, were 
considered: one with two non-overlapping spectra, and one where two spectra overlap in 
direction. Figure 7a shows two spectra in (/, A) space, each consisting of one frequency 
component and six longshore wavenumber components. The frequencies and peak A 
chosen correspond to the frequencies and directions of the spectral peaks in FGE. This 
condition was run through (17) using the same bathymetry as FGE. The result at Am 
water depth is shown in Figure 7b. The in-line second harmonic for the 0.06772 peak 
(marked "A"), the in-line third harmonic for the same peak (marked "B"), the in-line 
second harmonic for the 0.1077z peak (marked "C"), and the vector-sum peak (marked 
"D") and vector-difference peak (marked "E") have all been generated by nonlinear 
interaction. It is clear that the vector-sum peak is of the same order of magnitude as 
the in-line second harmonic of the 0.06772 spectral peak. 

The second case is shown in Figure 8a. Two directional spectra with only one frequency 
component each are positioned at the same frequencies as the first case, but the number 
of A components was increased to 20 to allow directional overlap.   The result of the 
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calculation is shown in Figure 8b. Here we see very little energy at the vector-sum peak 
(marked "D"). Energy in this location was generated by detuned interactions between 
the spectral peaks, and by colinear interactions between the overlapping components. It 
is apparent that the colinear interactions between the less-energetic directionally over- 
lapping components did not transfer as much energy to peak "D" as noncolinear detuned 
interactions between two more energetic spectral peaks did in the non-overlapping case. 
This shows that, for these cases, the vector-sum detuned interactions are responsible 
for a significant part of nonlinear energy transfer. 

Discussion 

In this section we used the angular-spectrum Boussinesq model of Kirby (1990) to show 
that vector-sum detuned interactions play an important role in nonlinear energy trans- 
fer. This is shown in the two preliminary investigations of steady and unsteady wave 
evolution discussed herein. Actual input of the field data to the model has proved 
to be problematic, so we used two simplified wave fields. These simplified wave fields 
retain much of the character of the actual field data with fewer components. The re- 
sults show that the vector-sum interactions can be as prominent in wavefield evolution as 
the colinear interactions. Model investigations using field data, however, are continuing. 

It can be argued that the field data of FGE was actually in deeper water than is valid 
for lowest-order Boussinesq theory. Therefore, future work will focus on the use of a 
more dispersive Boussinesq-type model than that of Kirby (1990). This model will be 
similarly cast in the angular-spectrum format. Additional work will also include the use 
of a directional bispectrum, which is derivable from the model equation. This will allow 
us to investigate the strength of the different interactions. 
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Non-overlapping Case Non-overlapping Case 

Figure 7: Simplified wave field - narrow directional spread, (a): Contour and surface 
plots of input condition in (/, A) space at 10m water depth; (b): Contour and surface 
plots of result at Am water depth. 
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Figure 8: Simplified wave field - broad directional spread, (a): Contour and surface 
plots of input condition in (/, A) space at 10m water depth; (b): Contour and surface 
plots of result at 4?n water depth. 
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